track test
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 20)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Vikram Narayanan Dhamu ◽  
Suhashine Sukumar ◽  
Crisvin Sajee Kadambathil ◽  
Sriram Muthukumar ◽  
Shalini Prasad

Using pesticides is a common agricultural and horticultural practice to serve as a control against weeds, fungi, and insects in plant systems. The application of these chemical agents is usually by spraying them on the crop or plant. However, this methodology is not highly directional, and so only a fraction of the pesticide actually adsorbs onto the plant, and the rest seeps through into the soil base contaminating its composition and eventually leaching into groundwater sources. Electrochemical sensors which are more practical for in situ analysis used for pesticide detection in soil runoff systems are still in dearth, while the ones published in the literature are attributed with complex sensor modification/functionalization and preprocessing of samples. Hence, in this work, we present a highly intuitive electroanalytical sensor approach toward rapid (10 min), on-demand screening of commonly used pesticides—glyphosate and atrazine—in soil runoff. The proposed sensor functions based on the affinity biosensing mechanism driven via thiol cross-linker and antibody receptors that holistically behaves as a recognition immunoassay stack that is specific and sensitive to track test pesticide analytes. Then, this developed sensor is integrated further to create a pesticide-sensing ecosystem using a front-end field-deployable smart device. The method put forward in this work is compared and validated against a standard laboratory potentiostat instrument to determine efficacy, feasibility, and robustness for a point-of-use (PoU) setting yielding LoD levels of 0.001 ng/ml for atrazine and 1 ng/ml for glyphosate. Also, the ML model integration resulted in an accurate prediction rate of ≈80% in real soil samples. Therefore, a universal pesticide screening analytical device is designed, fabricated, and tested for pesticide assessment in real soil runoff samples.


2021 ◽  
Vol 53 (2) ◽  
pp. 210201
Author(s):  
I. K.A.P. Utama ◽  
Dian Purnamasari ◽  
I Ketut Suastika ◽  
Nurhadi Nurhadi ◽  
Giles Thomas

. Periodically conducting a benchmark test with estimated uncertainty is important to improve the quality of resistance predictions and understand the influence of instrumentation, testing procedures and analysis techniques. The LHI-007 Ro-Ro Ferry ship model, made available by the Maritime Research Institute Netherlands (MARIN), was used for benchmark testing from 2010 to 2018 at the Indonesian Hydrodynamic Laboratory. Comparisons were made between filtering the resistance data with a low-pass filter and with a Kalman filter. This work shows how benchmark tests can be used to track test performance over a longer period and proposes techniques to improve the uncertainty in the resistance results.


Author(s):  
Mark Kramer ◽  
Eva Piatrikova

The overarching purpose of this review was to highlight the utility of different aerobic field tests in terms of the parameters they provide, with a specific focus on shuttle running and all-out testing. Various field tests are discussed in detail and are categorised according to linear continuous running tests (e.g. 12-minute Cooper Test, University of Montreal Track Test [UMTT], 1200/1600 m time trials, 3-minute all-out test for running [3MT]), intermittent shuttle running tests (e.g. yo-yo inter-mittent recovery test level 1 [YYIR1], 30-15 intermittent fitness test [IFT], and the intermittent all-out shuttle test [IAOST]), and continuous shuttle running tests (e.g. 1.2 km shuttle run test [1.2SRT], maximal multi-stage 20-m shuttle test [MSR], 25-m, 30 m and 50-m 3-minute all-out shuttle test [AOST]). Readers will be guided through the theoretical and practical underpinnings of the 3MT methodology, where the all-out testing methodology is stationed within the testing paradigm, and how to practically implement and interpret the results thereof.


Author(s):  
Claire A. Molinari ◽  
Johnathan Edwards ◽  
Véronique Billat

Until recently, it was thought that maximal oxygen uptake (VO2max) was elicited only in middle-distance events and not the sprint or marathon distances. We tested the hypothesis that VO2max can be elicited in both the sprint and marathon distances and that the fraction of time spent at VO2max is not significantly different between distances. Methods: Seventy-eight well-trained males (mean [SD] age: 32 [13]; weight: 73 [9] kg; height: 1.80 [0.8] m) performed the University of Montreal Track Test using a portable respiratory gas sampling system to measure a baseline VO2max. Each participant ran one or two different distances (100 m, 200 m, 800 m, 1500 m, 3000 m, 10 km or marathon) in which they are specialists. Results: VO2max was elicited and sustained in all distances tested. The time limit (Tlim) at VO2max on a relative scale of the total time (Tlim at VO2max%Ttot) during the sprint, middle-distance, and 1500 m was not significantly different (p > 0.05). The relevant time spent at VO2max was only a factor for performance in the 3000 m group, where the Tlim at VO2max%Ttot was the highest (51.4 [18.3], r = 0.86, p = 0.003). Conclusions: By focusing on the solicitation of VO2max, we demonstrated that the maintenance of VO2max is possible in the sprint, middle, and marathon distances.


Author(s):  
Andrew M. Jones ◽  
Brett S. Kirby ◽  
Ida E. Clark ◽  
Hannah M. Rice ◽  
Elizabeth Fulkerson ◽  
...  

The requirements of running a 2 hour marathon have been extensively debated but the actual physiological demands of running at ~21.1 km/h have never been reported. We therefore conducted laboratory-based physiological evaluations and measured running economy (O2 cost) while running outdoors at ~21.1 km/h, in world-class distance runners as part of Nike's 'Breaking 2' marathon project. On separate days, 16 male distance runners (age, 29 ± 4 years; height, 1.72 ± 0.04 m; mass, 58.9 ± 3.3 kg) completed an incremental treadmill test for the assessment of V̇O2peak, O2 cost of submaximal running, lactate threshold and lactate turn-point, and a track test during which they ran continuously at 21.1 km/h. The laboratory-determined V̇O2peak was 71.0 ± 5.7 ml/kg/min with lactate threshold and lactate turn-point occurring at 18.9 ± 0.4 and 20.2 ± 0.6 km/h, corresponding to 83 ± 5 % and 92 ± 3 % V̇O2peak, respectively. Seven athletes were able to attain a steady-state V̇O2 when running outdoors at 21.1 km/h. The mean O2 cost for these athletes was 191 ± 19 ml/kg/km such that running at 21.1 km/h required an absolute V̇O2 of ~4.0 L/min and represented 94 ± 3 % V̇O2peak. We report novel data on the O2 cost of running outdoors at 21.1 km/h, which enables better modelling of possible marathon performances by elite athletes. Using the value for O2 cost measured in this study, a sub-2 hour marathon would require a 59 kg runner to sustain a V̇O2 of approximately 4.0 L/min or 67 ml/kg/min.


2020 ◽  
Vol 103 (4) ◽  
pp. 1572-1577
Author(s):  
Reda M. R. Ramzy ◽  
Amal Rabiee ◽  
Khaled M. Abd Elaziz ◽  
Carl H. Campbell ◽  
Nupur Kittur ◽  
...  

2020 ◽  
Vol 15 (6) ◽  
pp. 853-861
Author(s):  
Claire A. Molinari ◽  
Florent Palacin ◽  
Luc Poinsard ◽  
Véronique L. Billat

Purpose: To validate a new perceptually regulated, self-paced maximal oxygen consumption field test (the Running Advisor Billat Training [RABIT] test) that can be used by recreational runners to define personalized training zones. Design: In a cross-sectional study, male and female recreational runners (N = 12; mean [SD] age = 43 [8] y) completed 3 maximal exercise tests (2 RABIT tests and a University of Montreal Track Test), with a 48-hour interval between tests. Methods: The University of Montreal Track Test was a continuous, incremental track test with a 0.5-km·h−1 increment every minute until exhaustion. The RABIT tests were conducted at intensities of 11, 14, and 17 on the rating of perceived exertion (RPE) scale for 10, 5, and 3 minutes, respectively, with a 1-minute rest between efforts. Results: The 2 RABIT tests and the University of Montreal Track Test gave similar mean (SD) maximal oxygen consumption values (53.9 [6.4], 56.4 [9.1], and 55.4 [7.6] mL·kg−1·min−1, respectively, P = .722). The cardiorespiratory and speed responses were reliable as a function of the running intensity (RPE: 11, 14, and 17) and the relative time point for each RPE stage. Indeed, the oxygen consumption, heart rate, ventilation, and speed values did not differ significantly when the running time was expressed as a relative duration of 30%, 60%, or 90% (ie, at 3, 6, and 9 min of a 10-min effort at RPE 11; P = .997). Conclusions: The results demonstrate that the RABIT test is a valid method for defining submaximal and maximal training zones in recreational runners.


2020 ◽  
Vol 10 (10) ◽  
pp. 3649
Author(s):  
Tae Ho Kwon ◽  
Sang I. Park ◽  
Young-Hoon Jang ◽  
Sang-Ho Lee

Building information modeling (BIM) has been widely applied in conjunction with the industry foundation class (IFC) for buildings and infrastructure such as railways. However, a limitation of the BIM technology presents limitations that make designing the three-dimensional (3D) alignment-based information models difficult. Thus, the time and effort required to create a railway track model are increased, while the reliability of the model is reduced. In this study, we propose a methodology for developing an alignment-based independent railway track model and extended IFC models containing railway alignment information. The developed algorithm using BIM software tools allows for a discontinuous structure to be designed. The 3D alignment information connects different BIM software tools, and the classification system and IFC schema for expressing railway tracks are extended. Moreover, the classification system is fundamental for assigning IFC entities to railway components. Spatial and hierarchical entities were created through a developed user interface. The proposed methodology was implemented in an actual railway track test. The possibility of managing IFC-based railway track information, including its 3D alignment information, was confirmed. The proposed methodology can reduce the modeling time and can be extended to other alignment-based structures, such as roads.


Sign in / Sign up

Export Citation Format

Share Document