scholarly journals Role of Internal Stress in the Early-Stage Nucleation of Amorphous Calcium Carbonate Gels

2020 ◽  
Vol 10 (12) ◽  
pp. 4359 ◽  
Author(s):  
Qi Zhou ◽  
Tao Du ◽  
Lijie Guo ◽  
Gaurav Sant ◽  
Mathieu Bauchy

Although calcium carbonate (CaCO3) precipitation plays an important role in nature, its mechanism remains only partially understood. Further understanding the atomic driving force behind the CaCO3 precipitation could be key to facilitate the capture, immobilization, and utilization of CO2 by mineralization. Here, based on molecular dynamics simulations, we investigate the mechanism of the early-stage nucleation of an amorphous calcium carbonate gel. We show that the gelation reaction manifests itself by the formation of some calcium carbonate clusters that grow over time. Interestingly, we demonstrate that the gelation reaction is driven by the existence of some competing local molecular stresses within the Ca and C precursors, which progressively get released upon gelation. This internal molecular stress is found to originate from the significantly different local coordination environments exhibited by Ca and C atoms. These results highlight the key role played by the local stress acting within the atomic network in governing gelation reactions.

2015 ◽  
Vol 17 (26) ◽  
pp. 17494-17500 ◽  
Author(s):  
Colin L. Freeman ◽  
John H. Harding ◽  
David Quigley ◽  
P. Mark Rodger

Molecular dynamics simulations of the protein ovocleidin-17 binding to the surface of amorphous calcium carbonate highlighting the residues contacting the surface.


Soft Matter ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. 2942-2956
Author(s):  
Rishabh D. Guha ◽  
Ogheneovo Idolor ◽  
Katherine Berkowitz ◽  
Melissa Pasquinelli ◽  
Landon R. Grace

We investigated the effect of temperature variation on the secondary bonding interactions between absorbed moisture and epoxies with different morphologies using molecular dynamics simulations.


Soft Matter ◽  
2021 ◽  
Author(s):  
Garima Rani ◽  
Kenichi Kuroda ◽  
Satyavani Vemparala

Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows...


2021 ◽  
Vol 23 (10) ◽  
pp. 5984-5991
Author(s):  
Letizia Tavagnacco ◽  
Ester Chiessi ◽  
Emanuela Zaccarelli

By using extensive all-atom molecular dynamics simulations of an atactic linear polymer chain, we unveil the role of pressure in the coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM).


Langmuir ◽  
2017 ◽  
Vol 33 (42) ◽  
pp. 11543-11553 ◽  
Author(s):  
Li Li ◽  
Deshuai Yang ◽  
Trevor R. Fisher ◽  
Qi Qiao ◽  
Zhen Yang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 294
Author(s):  
Jiaqing Li ◽  
Cheng Lu ◽  
Long Wang ◽  
Linqing Pei ◽  
Ajit Godbole ◽  
...  

Hydrogen embrittlement (HE) has been extensively studied in bulk materials. However, little is known about the role of H on the plastic deformation and fracture mechanisms of nanoscale materials such as nanowires. In this study, molecular dynamics simulations are employed to study the influence of H segregation on the behavior of intergranular cracks in bicrystalline α-Fe nanowires. The results demonstrate that segregated H atoms have weak embrittling effects on the predicted ductile cracks along the GBs, but favor the cleavage process of intergranular cracks in the theoretically brittle directions. Furthermore, it is revealed that cyclic loading can promote the H accumulation into the GB region ahead of the crack tip and overcome crack trapping, thus inducing a ductile-to-brittle transformation. This information will deepen our understanding on the experimentally-observed H-assisted brittle cleavage failure and have implications for designing new nanocrystalline materials with high resistance to HE.


2006 ◽  
Vol 110 (7) ◽  
pp. 3323-3329 ◽  
Author(s):  
Said Hamad ◽  
Changman Moon ◽  
C. Richard A. Catlow ◽  
Ashley T. Hulme ◽  
Sarah L. Price

Sign in / Sign up

Export Citation Format

Share Document