scholarly journals Random Fiber Array Generation Considering Actual Noncircular Fibers with a Particle-Shape Library

2020 ◽  
Vol 10 (16) ◽  
pp. 5675
Author(s):  
Myeong-Seok Go ◽  
Shin-Mu Park ◽  
Do-Won Kim ◽  
Do-Soon Hwang ◽  
Jae Hyuk Lim

In this work, we generated a set of random representative volume elements (RVEs) of unidirectional composites considering actual noncircular cross-sections and positions of fibers with the aid of a shape-library approach. The cross-section of the noncircular carbon fiber was extracted from the M55J/M18 composite using image processing and a signed-distance-based mesh trimming scheme, and they were stored in a particle-shape library. The obtained noncircular fibers randomly chosen from the particle-shape library were applied to random fiber array generation algorithms to generate RVEs of various fiber volume fractions. To check the randomness of the proposed RVEs, we calculated spatial and physical metrics, and concluded that the proposed method is sufficiently random. Furthermore, to compare the effective elastic properties and the maximum von Mises stress in the matrix, it was applied to composite materials with different relative ratios of elastic moduli of M55J/M18 and T300/PR319. In the case of T300/PR319 having a high RRT (relative ratio of the transverse elastic moduli), simulation results were deviated up to about 5% in the effective elastic properties and 13% in the maximum von Mises stress in the matrix according to the fiber shapes.

2013 ◽  
Vol 81 (2) ◽  
Author(s):  
Chetan Shivaputra Jarali ◽  
Somaraddi R. Basavaraddi ◽  
Björn Kiefer ◽  
Sharanabasava C. Pilli ◽  
Y. Charles Lu

In the present study, the effective elastic properties of multifunctional carbon nanotube composites are derived due to the agglomeration of straight circular carbon nanotubes dispersed in soft polymer matrices. The agglomeration of CNTs is common due to the size of nanotubes, which is at nanoscales. Furthermore, it has been proved that straight circular CNTs provide higher stiffness and elastic properties than any other shape of the nanofibers. Therefore, in the present study, the agglomeration effect on the effective elastic moduli of the CNT polymer nanocomposites is investigated when circular CNTs are aligned straight as well as distributed randomly in the matrix. The Mori–Tanaka micromechanics theory is adopted to newly derive the expressions for the effective elastic moduli of the CNT composites including the effect of agglomeration. In this direction, analytical expressions are developed to establish the volume fraction relationships for the agglomeration regions with high, and dilute CNT concentrations. The volume of the matrix in which there may not be any CNTs due to agglomeration is also included in the present formulation. The agglomeration volume fractions are subsequently adopted to develop the effective relations of the composites for transverse isotropy and isotropic straight CNTs. The validation of the modeling technique is assessed with results reported, and the variations in the effective properties for high and dilute agglomeration concentrations are investigated.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Author(s):  
Armando Félix Quiñonez ◽  
Guillermo E Morales Espejel

This work investigates the transient effects of a single subsurface inclusion over the pressure, film thickness, and von Mises stress in a line elastohydrodynamic lubrication contact. Results are obtained with a fully-coupled finite element model for either a stiff or a soft inclusion moving at the speed of the surface. Two cases analyzed consider the inclusion moving either at the same speed as the mean velocity of the lubricant or moving slower. Two additional cases investigate reducing either the size of the inclusion or its stiffness differential with respect to the matrix. It is shown that the well-known two-wave elastohydrodynamic lubrication mechanism induced by surface features is also applicable to the inclusions. Also, that the effects of the inclusion become weaker both when its size is reduced and when its stiffness approaches that of the matrix. A direct comparison with predictions by the semi-analytical model of Morales-Espejel et al. ( Proc IMechE, Part J: J Engineering Tribology 2017; 231) shows reasonable qualitative agreement. Quantitatively some differences are observed which, after accounting for the semi-analytical model's simplicity, physical agreement, and computational efficiency, may then be considered as reasonable for engineering applications.


2000 ◽  
Vol 123 (2) ◽  
pp. 176-183 ◽  
Author(s):  
W. Pistoia ◽  
B. van Rietbergen ◽  
A. Laib ◽  
P. Ru¨egsegger

Micro-finite element (μFE) models based on high-resolution images have enabled the calculation of elastic properties of trabecular bone in vitro. Recently, techniques have been developed to image trabecular bone structure in vivo, albeit at a lesser resolution. The present work studies the usefulness of such in-vivo images for μFE analyses, by comparing their μFE results to those of models based on high-resolution micro-CT (μCT) images. Fifteen specimens obtained from human femoral heads were imaged first with a 3D-pQCT scanner at 165 μm resolution and a second time with a μCT scanner at 56 μm resolution. A third set of images with a resolution of 165 μm was created by downscaling the μCT measurements. The μFE models were created directly from these images. Orthotropic elastic properties and the average tissue von Mises stress of the specimens were calculated from six FE-analyses per specimen. The results of the 165 μm models were compared to those of the 56 μm model, which was taken as the reference model. The results calculated from the pQCT-based models, correlated excellent with those calculated from the reference model for both moduli R2>0.95 and for the average tissue von Mises stress R2>0.83. Results calculated from the downscaled micro-CT models correlated even better with those of the reference models (R2>0.99 for the moduli and R2>0.96 for the average von Mises stress). In the case of the 3D-pQCT based models, however, the slopes of the regression lines were less than one and had to be corrected. The prediction of the Poisson’s ratios was less accurate (R2>0.45 and R2>0.67) for the models based on 3D-pQCT and downscaled μCT images respectively). The fact that the results from the downscaled and original μCT images were nearly identical indicates that the need for a correction in the case of the 3D-pQCT measurements was not due to the voxel size of the images but due to a higher noise level and a lower contrast in these images, in combination with the application of a filtering procedure at 165 micron images. In summary: the results of μFE models based on in-vivo images of the 3D-pQCT can closely resemble those obtained from μFE models based on higher resolution μCT system.


2020 ◽  
Vol 402 ◽  
pp. 14-19
Author(s):  
Andri Afrizal ◽  
Ikramullah ◽  
Syarizal Fonna ◽  
Syifaul Huzni

The microbond test was one of the methods to examine the interfacial shear strength (IFSS) value of fiber and polymer matrix. The meniscus angle that formed at both ends of the matrix is difficult to control while manufacturing the specimen for the microbond test. Therefore, the effect of meniscus angle must be evaluated. In this paper, we evaluated the impact of variations of the meniscus angle against the maximum von-mises stress and the IFSS value of the Typha fiber epoxy matrix by finite element method. The geometry of the microbond test specimen was modeled with 0.25 mm fiber radius, 2 mm fiber length, 1.75 mm embedded length of the matrix, and varied the meniscus angles with 22°, 30°, 45°, 60°, 75°, and 90°. The mesh type quad-dominated CAX4R is used on fiber and matrix, while quad COHAX4 is applied to the cohesive element between fiber and matrix. The constantly applied displacement was adjusted to the upper end of the fiber at 0.6 mm. The simulation results showed that the difference in maximum stress obtained in each model. Furthermore, that is not given much difference in IFSS value. It can be concluded that the meniscus angle affects the maximum von-mises stress but not too much-affected IFSS value of the fiber and epoxy matrix.


Author(s):  
I.A Guz ◽  
A.A Rodger ◽  
A.N Guz ◽  
J.J Rushchitsky

The paper draws on the similarities between the well-known process of whiskerization of microfibres and the recent idea of bristled nanowires. The new method for evaluation of the effective elastic properties of such materials is suggested based on the model of four-component composition. This model assumes the transverse isotropy of continuum and predicts five elastic moduli and density as independent effective constants. An example of calculation of the constants for the particular materials is given. It shows the significant increase in the shear strength of composites with whiskerized or bristled fibres.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Taeyong Lee ◽  
Revanth Reddy Garlapati ◽  
Kathy Lam ◽  
Peter Vee Sin Lee ◽  
Yoon-Sok Chung ◽  
...  

Computationally expensive finite element (FE) methods are generally used for indirect evaluation of tissue mechanical properties of trabecular specimens, which is vital for fracture risk prediction in the elderly. This work presents the application of reduced-basis (RB) methods for rapid evaluation of simulation results. Three cylindrical transiliac crest specimens (diameter: 7.5 mm, length: 10–12 mm) were obtained from healthy subjects (20 year-old, 22 year-old, and 24 year-old females) and scanned using microcomputed tomography imaging. Cubic samples of dimensions 5×5×5 mm3 were extracted from the core of the cylindrical specimens for FE analysis. Subsequently, a FE solution library (test space) was constructed for each of the specimens by varying the material property parameters: tissue elastic modulus and Poisson’s ratio, to develop RB algorithms. The computational speed gain obtained by the RB methods and their accuracy relative to the FE analysis were evaluated. Speed gains greater than 4000 times, were obtained for all three specimens for a loss in accuracy of less than 1% in the maxima of von-Mises stress with respect to the FE-based value. The computational time decreased from more than 6 h to less than 18 s. RB algorithms can be successfully utilized for real-time reliable evaluation of trabecular bone elastic properties.


2020 ◽  
Vol 15 (55) ◽  
pp. 36-49
Author(s):  
Fedaoui Kamel ◽  
Lazhar Baroura ◽  
Karim Arar ◽  
Hichem Amrani ◽  
Mohamed said Boutaani

In the present study, Composite material consisting of an elastic homogeneous isotropic matrix in which are embedded coated elastic isotropic inclusions, widely used in many applications is investigate by homogenization approach coupled to the finite elements method. A finite element model is proposed to predict the Young and Shear modulus of the three-phase composite containing spherical inclusions surrounded by a spherical or ellipsoid interphase layer. Three cases of particles volume fractions and interphase was considered with addition of two interphase morphology. Young modulus of interphase region was varied from soft to hard than the matrix properties. We note that interphase morphology and properties plays an important role in the elastic properties of composite with increasing the volume fraction of inclusions and interphase. The results were compared to the first order bounds Voigt and Reuss, and the mean field homogenization techniques. A sensitive study of the effect of mesh density on the results of the von Mises stresses and elastic properties has been made.


2016 ◽  
Vol 34 (3) ◽  
pp. 257-267 ◽  
Author(s):  
H. Wang ◽  
Y.-X. Kang ◽  
B. Liu ◽  
Q.-H. Qin

AbstractExisting studies reveal that the shape corners of hexagonal fiber affect the degree of constraint on the matrix material. However, none of these studies included the effect of orientation of hexagonal fibers. In this study, a computational micromechanics model of oriented hexagonal fibers in periodic unidirectional composite materials is established for the determination of effective orthotropic elastic properties of the composite. In the present numerical modeling, the representative unit composite cell including the matrix material and the single oriented hexagonal fiber or random oriented hexagonal fibers is solved by micro-scale finite element analysis with different stress loads and periodic displacement boundary conditions, which are applied along the cell boundary to meet the requirement of straight-line constraint during deformation of the cell. Subsequently, the effective elastic properties of the composite are evaluated for periodic regular packing and random packing using the homogenization approach for investigating the influence of unified orientation and random orientation of the hexagonal fibers on the overall elastic properties of the fiber-reinforced composites. The numerical results are verified by comparing with other available results.


Sign in / Sign up

Export Citation Format

Share Document