scholarly journals Experimental Investigations on Temperature Generation and Release of Ultra-High Performance Concrete during Fatigue Tests

2020 ◽  
Vol 10 (17) ◽  
pp. 5845
Author(s):  
Melchior Deutscher ◽  
Ngoc Linh Tran ◽  
Silke Scheerer

Smarter, more filigree, and resource-saving buildings are the aim of developments in the construction industry. In reinforced concrete construction, ultra-high strength concretes have been developed to achieve these goals. Due to their use and requirements, these highly pressure-resistant materials are increasingly exposed to cyclically occurring and high-frequency loads. Examples of this are applications in long-span bridges or wind turbines. Research into the fatigue behaviour of the new construction material is therefore very important for the standardization and practical introduction of the high performance material. In this article, we want to investigate the heating process of ultra-high performance concrete (UHPC) under fatigue stress in more detail. In previous investigations in this project, an influence of the heating on the fatigue strength could be determined. A systematic parameter study has defined decisive load configurations for a maximum heating process. The aim is now to better understand the heating process. For this purpose, the temperature generation rate and the temperature release, which probably influences the overall temperature development, are investigated. A test program with eight experiments gives information about the temperature release during the experiment and the heating rate with and without pre-damage in the sample. In addition, the causes of failure caused by temperature are investigated with additional insulated tests. The results are presented, discussed, and conclusions are drawn in the article. For instance, fatigue damage affects the rate of temperature increase, but not the thermal conductivity of the material. In the different configurations, the test specimens essentially overlap at the maximum temperature reached in the inner test specimen. In addition to the assumed influence of the temperature gradients in the cross section as a cause of premature failure due to additional constraint stresses, the maximum temperature in particular turns out to be decisive, independent of the gradient.

2019 ◽  
Vol 9 (19) ◽  
pp. 4087 ◽  
Author(s):  
Melchior Deutscher ◽  
Ngoc Linh Tran ◽  
Silke Scheerer

Leaner, more filigree, and resource-saving constructions are the development goal of the in the building industry. In reinforced concrete construction, a ultra-high strength concrete was developed to achieve these goals. Due to its use and requirements, this very pressure-resistant material is no longer only exposed to static loads. In applications such as wide-span bridges, machine foundations and wind turbines, the susceptibility to vibration is also significant. Research into the fatigue behavior of the new building material is therefore very important. In this article we will discuss the effect of heating up of high performance concretes under fatigue stress. The thesis is that warming up, which was already observed by several research groups, has an influence on the fatigue strength. Changes in the strength of the concrete or residual stresses generated by heating can lead to early failure. The aim is to find the reasons for the heating and the grade of influence on the fatigue strength. A systematic test program was developed to investigate the influencing parameters maximum stress level, frequency, and maximum grain size of the concrete. Thirty fatigue tests were carried out; the results will be presented here. The influence on the temperature increase as well as on the heating rate for the individual parameters will be discussed. The results show that all three discussed parameters have a significant influence on the temperature rise. Whereas the maximum temperature reached depends strongly on the frequency, the other two parameters mainly influence the heating rate.


Author(s):  
C. Sauer ◽  
F. Bagusat ◽  
M.-L. Ruiz-Ripoll ◽  
C. Roller ◽  
M. Sauer ◽  
...  

AbstractThis work aims at the characterization of a modern concrete material. For this purpose, we perform two experimental series of inverse planar plate impact (PPI) tests with the ultra-high performance concrete B4Q, using two different witness plate materials. Hugoniot data in the range of particle velocities from 180 to 840 m/s and stresses from 1.1 to 7.5 GPa is derived from both series. Within the experimental accuracy, they can be seen as one consistent data set. Moreover, we conduct corresponding numerical simulations and find a reasonably good agreement between simulated and experimentally obtained curves. From the simulated curves, we derive numerical Hugoniot results that serve as a homogenized, mean shock response of B4Q and add further consistency to the data set. Additionally, the comparison of simulated and experimentally determined results allows us to identify experimental outliers. Furthermore, we perform a parameter study which shows that a significant influence of the applied pressure dependent strength model on the derived equation of state (EOS) parameters is unlikely. In order to compare the current results to our own partially reevaluated previous work and selected recent results from literature, we use simulations to numerically extrapolate the Hugoniot results. Considering their inhomogeneous nature, a consistent picture emerges for the shock response of the discussed concrete and high-strength mortar materials. Hugoniot results from this and earlier work are presented for further comparisons. In addition, a full parameter set for B4Q, including validated EOS parameters, is provided for the application in simulations of impact and blast scenarios.


2015 ◽  
Vol 77 ◽  
pp. 307-316 ◽  
Author(s):  
Serina Ng ◽  
Bjørn Petter Jelle ◽  
Linn Ingunn Christie Sandberg ◽  
Tao Gao ◽  
Ólafur Haralds Wallevik

2016 ◽  
Vol 249 ◽  
pp. 320-324
Author(s):  
Jan Tichý ◽  
David Čítek ◽  
Jiří Kolísko ◽  
Jan Komanec ◽  
Bohuslav Slánský ◽  
...  

Article deals with design of footbridge made from ultra high performance concrete (UHPC). UHPC is relatively new type of cementitious material with high compressive strength and high durability. For reliable design of construction from this material an extensive experimental research and verification of material properties are needed. Skanska and Pontex company with cooperation with Klokner institute developed matrix of UHPC used for footbridge construction. Material properties were verified during whole developing and producing process. Footbridge was casted in precast plant Skanska – Steti in December 2014. It was installed over Opatovický canal in October 2015. Contribution describes design, production and installation of footbridge. Material properties of used UHPC are also included.


2017 ◽  
Vol 6 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Yang Chen ◽  
Faris Matalkah ◽  
Yening Yu ◽  
Weerirsiri Rankothge ◽  
Anagi Balachandra ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Matej Špak ◽  
Mária Kozlovská ◽  
Zuzana Struková ◽  
Renáta Bašková

Nowadays, high-performance concrete (HPC) and ultra-high-performance concrete (UHPC) are ranked among advanced concrete technologies. The application of the mentioned advanced technologies may have potential to improve the construction efficiency from several points of view. For instance, reducing of construction time and construction material, construction quality improving, environmental impact minimizing, and increasing of both durability and lifetime of structures as well as reducing of total construction costs may be obtained. Particular advanced concrete technologies are described and the possibilities of their utilization in both monolithic structures and precast units are presented in the article. The main benefits of modern methods of construction (MMC) based on advanced concrete technologies application in precast elements production are presented. Regarding the selected aspects of construction efficiency assessment, a comparison of conventional and advanced concrete technologies that are applied in monolithic structures and precast units is made. The results of this comparison, estimated in semantic differential scale, are presented in the article. By the results of the comparison, the significance of applying the advanced concrete technologies in modern methods of concrete structures production is demonstrated in order to improve construction efficiency.


2013 ◽  
Vol 351-352 ◽  
pp. 50-54 ◽  
Author(s):  
Jee Sang Kim ◽  
Sang Hyeok Park ◽  
Chang Bin Joh ◽  
Jong D.K. Kwark ◽  
Eun Suk Choi

The various push-out tests have been performed to investigate the load carrying capacity and ultimate behavior of headed studs in UHPC (Ultra High Performance Concrete), which has high compressive and tensile strength as well as high durability compared to ordinary concrete. The test program included the studs with a diameter of 16mm and 22mm for various aspect ratios (height to depth ratio of a stud) and cover depths. This paper presents the main results of the experimental investigations.


Sign in / Sign up

Export Citation Format

Share Document