scholarly journals Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

Author(s):  
Ingrid Lande Larsen ◽  
Ida Granseth Aasbakken ◽  
Reyn O’Born ◽  
Katalin Vertes ◽  
Rein Terje Thorstensen
2016 ◽  
Vol 249 ◽  
pp. 320-324
Author(s):  
Jan Tichý ◽  
David Čítek ◽  
Jiří Kolísko ◽  
Jan Komanec ◽  
Bohuslav Slánský ◽  
...  

Article deals with design of footbridge made from ultra high performance concrete (UHPC). UHPC is relatively new type of cementitious material with high compressive strength and high durability. For reliable design of construction from this material an extensive experimental research and verification of material properties are needed. Skanska and Pontex company with cooperation with Klokner institute developed matrix of UHPC used for footbridge construction. Material properties were verified during whole developing and producing process. Footbridge was casted in precast plant Skanska – Steti in December 2014. It was installed over Opatovický canal in October 2015. Contribution describes design, production and installation of footbridge. Material properties of used UHPC are also included.


Author(s):  
Mohamadreza Shafieifar ◽  
Mahsa Farzad ◽  
Atorod Azizinamini

Accelerated bridge construction (ABC) is a paradigm change in delivery of bridges. ABC minimizes the traffic interruption, enhances safety to public and workers by significantly reducing on-site construction activities, and results in longer-lasting bridges. The use of precast elements is gaining attention owing to inherent benefits of accelerated construction. Designing an economical connection is one of the main concerns for these structures. New improved materials such as ultra-high-performance concrete (UHPC) with superior characteristics can provide solutions for joining precast concrete elements. In this paper two types of column to cap beam connection using UHPC are proposed for seismic and non-seismic regions. Among the merits of the proposed details, large tolerances in construction and simplicity of the connection can be highlighted which facilitates and accelerates the on-site construction time. The experimental program was carried out to evaluate the performance and structural behavior of the proposed connections. Four specimens were subjected to constant axial compressive loads and cyclic lateral loading. Results of the experiment showed that the displacement ductility of the specimens, incorporating suggested details, demonstrated adequate levels of displacement ductility. More importantly, the proposed connections prevented the damage into capacity protected element—in this case the cap beam. Analytical and nonlinear finite element analysis on the specimens was carried out to better comprehend the behavior of the proposed connections.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Matej Špak ◽  
Mária Kozlovská ◽  
Zuzana Struková ◽  
Renáta Bašková

Nowadays, high-performance concrete (HPC) and ultra-high-performance concrete (UHPC) are ranked among advanced concrete technologies. The application of the mentioned advanced technologies may have potential to improve the construction efficiency from several points of view. For instance, reducing of construction time and construction material, construction quality improving, environmental impact minimizing, and increasing of both durability and lifetime of structures as well as reducing of total construction costs may be obtained. Particular advanced concrete technologies are described and the possibilities of their utilization in both monolithic structures and precast units are presented in the article. The main benefits of modern methods of construction (MMC) based on advanced concrete technologies application in precast elements production are presented. Regarding the selected aspects of construction efficiency assessment, a comparison of conventional and advanced concrete technologies that are applied in monolithic structures and precast units is made. The results of this comparison, estimated in semantic differential scale, are presented in the article. By the results of the comparison, the significance of applying the advanced concrete technologies in modern methods of concrete structures production is demonstrated in order to improve construction efficiency.


Author(s):  
Ali Javed ◽  
Islam M. Mantawy ◽  
Atorod Azizinamini

Automation and robotics are integral parts of many industries but their potential for field implementation has not been significantly recognized by the construction industry. This is mainly attributed to conventional construction and design practices which undermine the benefits offered by these new technologies such as repetitions, precision, time savings, and increased safety. There is a need for advanced materials and 3D-printing systems which are capable of constructing structural elements with performance that emulates conventionally cast elements. This study presents a detailed framework and performance metrics for materials and 3D-printing systems for bridge applications. In addition, a study was carried out on ultra-high-performance concrete (UHPC) which showed sufficient extrudability and workability for 3D-printing applications. A 3D-printing system was developed for 3D-printing of continuous additive layers of UHPC with accelerated heat curing. Accelerated heat curing was used to enhance buildability, expedite the printing of the UHPC layers, and maximize the number of printed layers within the material open time. The effect of heat curing on material properties was also evaluated to obtain the optimal temperature to satisfy compressive strength requirements. This research effort aims to augment automated construction techniques and develop solutions to extend the applications of accelerated bridge construction.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1718 ◽  
Author(s):  
Hongyan Chu ◽  
Yu Zhang ◽  
Fengjuan Wang ◽  
Taotao Feng ◽  
Liguo Wang ◽  
...  

Ultra-high-performance concrete (UHPC) has been used as an advanced construction material in civil engineering because of its excellent mechanical properties and durability. However, with the depletion of the raw material (river sand) used for preparing UHPC, it is imperative to find a replacement material. Recycled sand is an alternative raw material for preparing UHPC, but it degrades the performance. In this study, we investigated the use of graphene oxide (GO) as an additive for enhancing the properties of UHPC prepared from recycled sand. The primary objective was to investigate the effects of GO on the mechanical properties and durability of the UHPC at different concentrations. Additionally, the impact of the GO additive on the microstructure of the UHPC prepared from recycled sand was analysed at different mixing concentrations. The addition of GO resulted in the following: (1) The porosity of the UHPC prepared from recycled sand was reduced by 4.45–11.35%; (2) the compressive strength, flexural strength, splitting tensile strength, and elastic modulus of the UHPC prepared from recycled sand were enhanced by 8.24–16.83%, 11.26–26.62%, 15.63–29.54%, and 5.84–12.25%, respectively; (3) the resistance of the UHPC to penetration of chloride ions increased, and the freeze–thaw resistance improved; (4) the optimum mixing concentration of GO in the UHPC was determined to be 0.05 wt.%, according to a comprehensive analysis of its effects on the microstructure, mechanical properties, and durability of the UHPC. The findings of this study provide important guidance for the utilisation of recycled sand resources.


2020 ◽  
Vol 10 (17) ◽  
pp. 5845
Author(s):  
Melchior Deutscher ◽  
Ngoc Linh Tran ◽  
Silke Scheerer

Smarter, more filigree, and resource-saving buildings are the aim of developments in the construction industry. In reinforced concrete construction, ultra-high strength concretes have been developed to achieve these goals. Due to their use and requirements, these highly pressure-resistant materials are increasingly exposed to cyclically occurring and high-frequency loads. Examples of this are applications in long-span bridges or wind turbines. Research into the fatigue behaviour of the new construction material is therefore very important for the standardization and practical introduction of the high performance material. In this article, we want to investigate the heating process of ultra-high performance concrete (UHPC) under fatigue stress in more detail. In previous investigations in this project, an influence of the heating on the fatigue strength could be determined. A systematic parameter study has defined decisive load configurations for a maximum heating process. The aim is now to better understand the heating process. For this purpose, the temperature generation rate and the temperature release, which probably influences the overall temperature development, are investigated. A test program with eight experiments gives information about the temperature release during the experiment and the heating rate with and without pre-damage in the sample. In addition, the causes of failure caused by temperature are investigated with additional insulated tests. The results are presented, discussed, and conclusions are drawn in the article. For instance, fatigue damage affects the rate of temperature increase, but not the thermal conductivity of the material. In the different configurations, the test specimens essentially overlap at the maximum temperature reached in the inner test specimen. In addition to the assumed influence of the temperature gradients in the cross section as a cause of premature failure due to additional constraint stresses, the maximum temperature in particular turns out to be decisive, independent of the gradient.


Sign in / Sign up

Export Citation Format

Share Document