scholarly journals Non-Equilibrium Thermodynamic Approach to Ca2+-Fluxes in Cancer

2020 ◽  
Vol 10 (19) ◽  
pp. 6737 ◽  
Author(s):  
Umberto Lucia ◽  
Giulia Grisolia

Living systems waste heat in their environment. This is the measurable effect of the irreversibility of the biophysical and biochemical processes fundamental to their life. Non-equilibrium thermodynamics allows us to analyse the ion fluxes through the cell membrane, and to relate them to the membrane electric potential, in order to link this to the biochemical and biophysical behaviour of the living cells. This is particularly interesting in relation to cancer, because it could represent a new viewpoint, in order to develop new possible anticancer therapies, based on the thermoelectric behaviour of cancer itself. Here, we use a new approach, recently introduced in thermodynamics, in order to develop the analysis of the ion fluxes, and to point out consequences related to the membrane electric potential, from a thermodynamic viewpoint. We show how any increase in the cell temperature could generate a decrease in the membrane electric potential, with a direct relation between cancer and inflammation. Moreover, a thermal threshold, for the cell membrane electric potential gradient, has been obtained, and related to the mitotic activity. Finally, we obtained the external surface growth of the cancer results related (i) to the Ca2+-fluxes, (ii) to the temperature difference between the the system and its environment, and (iii) to the chemical potential of the ion species.

2020 ◽  
Vol 10 (20) ◽  
pp. 7071 ◽  
Author(s):  
Umberto Lucia ◽  
Giulia Grisolia

This paper presents a theoretical approach to glaucoma, with the aim of improving the comprehension of the biophysical bases for new possible therapies. The approach is based on a non-equilibrium thermodynamic model. The results point to the fundamental role of the membrane’s electric potential and of its relation with inflammation and ion fluxes. A new viewpoint is suggested to consider anti-inflammation and photobiomodulation as possible therapies for glaucoma.


2020 ◽  
Vol 45 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Antonio Bertei ◽  
Andrea Lamorgese ◽  
Roberto Mauri

AbstractNon-equilibrium thermodynamics provides a general framework for the description of mass and thermal diffusion, thereby including also cross-thermal and material diffusion effects, which are generally modeled through the Onsager coupling terms within the constitutive equations relating heat and mass flux to the gradients of temperature and chemical potential. These so-called Soret and Dufour coefficients are not uniquely defined, though, as they can be derived by adopting one of the several constitutive relations satisfying the principles of non-equilibrium thermodynamics. Therefore, mass diffusion induced by a temperature gradient and heat conduction induced by a composition gradient can be implicitly, and unexpectedly, predicted even in the absence of coupling terms. This study presents a critical analysis of different formulations of the constitutive relations, with special focus on regular binary mixtures. It is shown that, among the different formulations presented, the one which adopts the chemical potential gradient at constant temperature as the driving force for mass diffusion allows for the implicit thermo-diffusion effect to be strictly absent while the resulting Dufour effect is negligibly small. Such a formulation must be preferred to the other ones since cross-coupling effects are predicted only if explicitly introduced via Onsager coupling coefficients.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


2001 ◽  
Vol 81 (4) ◽  
pp. 1791-1826 ◽  
Author(s):  
Helfried Günther Glitsch

Like several other ion transporters, the Na+-K+ pump of animal cells is electrogenic. The pump generates the pump current I p. Under physiological conditions, I p is an outward current. It can be measured by electrophysiological methods. These methods permit the study of characteristics of the Na+-K+ pump in its physiological environment, i.e., in the cell membrane. The cell membrane, across which a potential gradient exists, separates the cytosol and extracellular medium, which have distinctly different ionic compositions. The introduction of the patch-clamp techniques and the enzymatic isolation of cells have facilitated the investigation of I p in single cardiac myocytes. This review summarizes and discusses the results obtained from I p measurements in isolated cardiac cells. These results offer new exciting insights into the voltage and ionic dependence of the Na+-K+ pump activity, its effect on membrane potential, and its modulation by hormones, transmitters, and drugs. They are fundamental for our current understanding of Na+-K+ pumping in electrically excitable cells.


2021 ◽  
Vol 225 ◽  
pp. 01010
Author(s):  
Polina Grigoreva ◽  
Elena Vilchevskaya ◽  
Vladimir Polyanskiy

In this work, the diffusion equation for the gas-solid system is revised to describe the non-uniform distribution of hydrogen in steels. The first attempt to build a theoretical and general model and to describe the diffusion process as driven by a chemical potential gradient is made. A linear elastic solid body and ideal gas, diffusing into it, are considered. At this stage, we neglect any traps and non-linear effects. The coupled diffusion-elastic boundary problem is solved for the case of the cylinder under the tensile loads. The obtained results correspond to the experimental ones. Based on them, the assumptions about the correctness of the model and its further improvement are suggested.


Sign in / Sign up

Export Citation Format

Share Document