scholarly journals Bone Healing Evaluation Following Different Osteotomic Techniques in Animal Models: A Suitable Method for Clinical Insights

2020 ◽  
Vol 10 (20) ◽  
pp. 7165
Author(s):  
Alexandre Anesi ◽  
Mattia Di Bartolomeo ◽  
Arrigo Pellacani ◽  
Marzia Ferretti ◽  
Francesco Cavani ◽  
...  

Osteotomy is a common step in oncological, reconstructive, and trauma surgery. Drilling and elevated temperature during osteotomy produce thermal osteonecrosis. Heat and associated mechanical damage during osteotomy can impair bone healing, with consequent failure of fracture fixation or dental implants. Several ex vivo studies on animal bone were recently focused on heating production during osteotomy with conventional drill and piezoelectric devices, particularly in endosseous dental implant sites. The current literature on bone drilling and osteotomic surface analysis is here reviewed and the dynamics of bone healing after osteotomy with traditional and piezoelectric devices are discussed. Moreover, the methodologies involved in the experimental osteotomy and clinical studies are compared, focusing on ex vivo and in vivo findings.

2018 ◽  
Vol 27 (9) ◽  
pp. 1375-1389 ◽  
Author(s):  
Mehmet H. Kural ◽  
Guohao Dai ◽  
Laura E. Niklason ◽  
Liqiong Gui

Objective: Invasive coronary interventions can fail due to intimal hyperplasia and restenosis. Endothelial cell (EC) seeding to the vessel lumen, accelerating re-endothelialization, or local release of mTOR pathway inhibitors have helped reduce intimal hyperplasia after vessel injury. While animal models are powerful tools, they are complex and expensive, and not always reflective of human physiology. Therefore, we developed an in vitro 3D vascular model validating previous in vivo animal models and utilizing isolated human arteries to study vascular remodeling after injury. Approach: We utilized a bioreactor that enables the control of intramural pressure and shear stress in vessel conduits to investigate the vascular response in both rat and human arteries to intraluminal injury. Results: Culturing rat aorta segments in vitro, we show that vigorous removal of luminal ECs results in vessel injury, causing medial proliferation by Day-4 and neointima formation, with the observation of SCA1+ cells (stem cell antigen-1) in the intima by Day-7, in the absence of flow. Conversely, when endothelial-denuded rat aortae and human umbilical arteries were subjected to arterial shear stress, pre-seeding with human umbilical ECs decreased the number and proliferation of smooth muscle cell (SMC) significantly in the media of both rat and human vessels. Conclusion: Our bioreactor system provides a novel platform for correlating ex vivo findings with vascular outcomes in vivo. The present in vitro human arterial injury model can be helpful in the study of EC-SMC interactions and vascular remodeling, by allowing for the separation of mechanical, cellular, and soluble factors.


Author(s):  
H-M Huang ◽  
K-Y Cheng ◽  
C-F Chen ◽  
K-L Ou ◽  
C-T Lin ◽  
...  

Resonance frequency (RF) analysis technology was used to design a dental implant stability detector. The device uses a miniature-sized electromagnetic triggering rod to elicit vibration in a dental implant. Vibrational signals were recorded via an acoustic receiver. To assess the in vivo performance of the test apparatus, animal models were used. Implants were placed in the left tibia of 12 rabbits using a conventional surgical procedure. Standard 3.2 mm × 8 mm implants were placed in each test tibia with pre-tapping cavities of 3.2 mm and 3.7 mm diameters to simulate either a ‘well-fitting’ or a ‘loosely fitting’ situation. The RF values of the test implants were detected by the newly developed device which was directly mounted on the healing abutments of the implants. The results showed that the RF values of the implants under well-fitting conditions significantly increased (p<0.01) 3 weeks after surgery and reached a plateau at around 6-7 weeks. Meanwhile implants with higher initial RF values had shorter healing times and higher final RF values at the plateau. Based on these findings, it was concluded that the idea of using the current designed device for detecting the degree of bone healing during the osseointegration process seems feasible.


2011 ◽  
Vol 142 (6) ◽  
pp. 1585-1587 ◽  
Author(s):  
Mathieu Granier ◽  
Morten O. Jensen ◽  
Jesper L. Honge ◽  
Alain Bel ◽  
Philippe Menasché ◽  
...  

2017 ◽  
Vol 31 (10) ◽  
pp. 4131-4135 ◽  
Author(s):  
Philip C. Müller ◽  
Daniel C. Steinemann ◽  
Felix Nickel ◽  
Lukas Chinczewski ◽  
Beat P. Müller-Stich ◽  
...  

Author(s):  
Sara Palma-Tortosa ◽  
Berta Coll-San Martin ◽  
Zaal Kokaia ◽  
Daniel Tornero

Stem cell therapy using human skin-derived neural precursors holds much promise for the treatment of stroke patients. Two main mechanisms have been proposed to give rise to the improved recovery in animal models of stroke after transplantation of these cells. First, the so called by-stander effect, which could modulate the environment during early phases after brain tissue damage, resulting in moderate improvements in the outcome of the insult. Second, the neuronal replacement and functional integration of grafted cells into the impaired brain circuitry, which will result in optimum long-term structural and functional repair. Recently developed sophisticated research tools like optogenetic control of neuronal activity and rabies virus monosynaptic tracing, among others, have made it possible to provide solid evidence about the functional integration of grafted cells and its contribution to improved recovery in animal models of brain damage. Moreover, previous clinical trials in patients with Parkinson’s Disease represent a proof of principle that stem cell-based neuronal replacement could work in humans. Our studies with in vivo and ex vivo transplantation of human skin-derived cells neurons in animal model of stroke and organotypic cultures of adult human cortex, respectively, also support the hypothesis that human somatic cells reprogrammed into neurons can get integrated in the human lesioned neuronal circuitry. In the present short review, we summarized our data and recent studies from other groups supporting the above hypothesis and opening new avenues for development of the future clinical applications.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 459 ◽  
Author(s):  
Emilia Bigaeva ◽  
Nataly Puerta Cavanzo ◽  
Elisabeth G. D. Stribos ◽  
Amos J. de Jong ◽  
Carin Biel ◽  
...  

Animal models are a valuable tool in preclinical research. However, limited predictivity of human biological responses in the conventional models has stimulated the search for reliable preclinical tools that show translational robustness. Here, we used precision-cut kidney slices (PCKS) as a model of renal fibrosis and investigated its predictive capacity for screening the effects of anti-fibrotics. Murine and human PCKS were exposed to TGFβ or PDGF pathway inhibitors with established anti-fibrotic efficacy. For each treatment modality, we evaluated whether it affected: (1) culture-induced collagen type I gene expression and interstitial accumulation; (2) expression of markers of TGFβ and PDGF signaling; and (3) expression of inflammatory markers. We summarized the outcomes of published in vivo animal and human studies testing the three inhibitors in renal fibrosis, and drew a parallel to the PCKS data. We showed that the responses of murine PCKS to anti-fibrotics highly corresponded with the known in vivo responses observed in various animal models of renal fibrosis. Moreover, our results suggested that human PCKS can be used to predict drug efficacy in clinical trials. In conclusion, our study demonstrated that the PCKS model is a powerful predictive tool for ex vivo screening of putative drugs for renal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document