scholarly journals Rotor Position Alignment of FSTPI Based PMSM Drive Using Low Frequency Signal Injection

2020 ◽  
Vol 10 (21) ◽  
pp. 7397
Author(s):  
Salih Baris Ozturk ◽  
Omer Cihan Kivanc ◽  
Ahmet Aksoz ◽  
Omar Hegazy

A PMSM drive with an incremental encoder or using sensorless control requires alignment to a predetermined rotor position (initial position) or initial rotor position detection at start-up. It is desired to lock the rotor to a known state (usually zero angle) at start-up if the initial rotor position detection is not available or difficult to obtain. In this work, a simple and proper zero angle initial rotor position alignment of four-switch three-phase (FSTP) inverter-based PMSM drive is proposed. Low-frequency voltage signal is applied to the d-axis voltage reference of the open-loop FSTPI based PMSM drive scheme without requiring complex trigonometric calculations, PI current regulators and current sensing. Therefore, fluctuated capacitor voltages at the DC-link are obtained allowing current flown through phase a locking the rotor with zero angle, properly. The proposed method has been implemented using a low-cost FSTP voltage source inverter (VSI) for PMSM drive with a floating-point TMS320F28335 DSP. The effectiveness and the feasibility of the proposed zero angle initial rotor position alignment method for PMSM driven by FSTP inverter have been demonstrated through experimental results.

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Qixin Zhu ◽  
Lei Xiong ◽  
Hongli Liu ◽  
Yonghong Zhu ◽  
Guoping Zhang

The precision of initial rotor position detection is critical for the start and running performance of permanent magnet synchronous motor (PMSM). This work describes a new open loop approach for identifying the initial position of a PMSM with an incremental encoder, even when a constant load torque is being applied. By giving a testing current with high frequency to the stator winding, the initial rotor position of a PMSM can be detected with reasonable accuracy. The rotor almost does not move during the process of identification. The FFT algorithms are used to remove the phase bias effects in identification. Our approach is quicker and simpler than the conventional approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wang Dafang ◽  
Qi Ji ◽  
Zhu Cheng ◽  
Liao Jiangmin ◽  
Yuan Yechen

In, conventional 3-stage start-up method of sensorless brushless direct current motor (BLDCM), the rotor is likely to jitter because rotor position cannot be obtained, and the motor is apt to lose step when it starts with load. These defects limit its use in engineering applications. In order to achieve smooth start in specific direction and guarantee start-up success rate with load, a start-up method based on improved inductance method and electromotive force (EMF) integration is proposed applying different voltage vectors according to rotor position interval judged by inductance method and determining integrator start-up time according to rotor initial position and the EMF. Experiments show that the method guarantees smooth acceleration and increases start-up success rate with load.


This paper presents a broad explanation on the effect of performance of an open-loop representation of a Brushless Direct Current (BLDC) Motor drive supplied from a two-level voltage source inverter (VSI) working on 120-degree mode of conduction. This research work is programming based and it is done in the MATLAB software for both No-load and load condition. BLDC motors are currently growing popularity and replacing brush motor in so many applications, as it can be used in both low and high-speed vehicle system and also in servo drives. The high reliability, good efficiency, high power concentration, less maintenance, simplicity of control and mainly the brushless operation make the BLDC motors superior to others. The presence of electronic elements for the smooth operation of the motor makes it less costly compare to other motors. It has a permanent magnet as a rotor with a balanced 3-phase conductor assembly as armature in its stator. The armature winding is driven by a power electronics inverter which is operating the switches according to the rotor position, sensed by an optical encoder or a Hall Effect sensor. It is found that by tuning the value of rotor position, no-load condition, and trapezoidal armature phase current, the variation in torque can be minimized. Different performance parameters for no-load and load condition of the BLDC motor like phase voltages and currents, speed, electromagnetic torque, d, q axis current and rotor position etc. are determined in MATLAB environment. These parameter evaluations is necessary to achieve better performance in both load and no load condition of BLDC motor in terms of speed and torque as these are the vital point for the selection of the application field of BLDC motor drive.


Sign in / Sign up

Export Citation Format

Share Document