scholarly journals A New Open Loop Approach for Identifying the Initial Rotor Position of a Permanent Magnet Synchronous Motor

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Qixin Zhu ◽  
Lei Xiong ◽  
Hongli Liu ◽  
Yonghong Zhu ◽  
Guoping Zhang

The precision of initial rotor position detection is critical for the start and running performance of permanent magnet synchronous motor (PMSM). This work describes a new open loop approach for identifying the initial position of a PMSM with an incremental encoder, even when a constant load torque is being applied. By giving a testing current with high frequency to the stator winding, the initial rotor position of a PMSM can be detected with reasonable accuracy. The rotor almost does not move during the process of identification. The FFT algorithms are used to remove the phase bias effects in identification. Our approach is quicker and simpler than the conventional approaches.

2013 ◽  
Vol 313-314 ◽  
pp. 31-36
Author(s):  
Bao Li ◽  
Guang Xu Zhou

ts required to real-time detect rotor position for vector control of permanent magnet synchronous motor, the difference is initial rotor position angle between the output position signal of absolute rotary transformer and the position signal for park transformation, then it is necessary to get the initial position of the motor before the motor starts. Based on the characteristics of permanent magnet synchronous motor, a certain method about automatic detection of the initial position of a rotor is obtained. Compared with other methods, there are advantages such as simple calculation, small impact by the external and high detection accuracy. At last, the correctness of the method is verified by theory and experiment.


2018 ◽  
Vol 40 (15) ◽  
pp. 4198-4207 ◽  
Author(s):  
Oussama Saadaoui ◽  
Amor Khlaief ◽  
Moez Abassi ◽  
Abdelkader Chaari ◽  
Mohamed Boussak

In this paper, a new technique to improve initial rotor position detection at standstill of a permanent magnet synchronous motor (PMSM) is presented. Sensorless field-oriented control (FOC) of a PMSM at low speed remains a difficult task. In order to estimate the position and rotor speed, we proposed a novel structure of a full-order sliding mode observer (FO-SMO) in a sensorless FOC. At standstill, we used a voltage pulse sequence applied to the windings in order to detect the initial rotor position. With this technique, we managed to minimize the error on the estimated rotor position to 3.75° (electrical) compared with others. The validity of the proposed approach with a 1.1-kW low-speed PMSM sensorless FOC has been proved by experimental results.


2020 ◽  
Vol 11 (4) ◽  
pp. 71
Author(s):  
Zhiqiang Wang ◽  
Bo Yao ◽  
Liyan Guo ◽  
Xuefeng Jin ◽  
Xinmin Li ◽  
...  

The accurate initial rotor position of a permanent magnet synchronous motor (PMSM) is necessary for starting the motor, and for the position sensorless control method adopted by a PMSM control system under some working conditions. This paper presents a new method to detect the initial rotor position of a permanent magnet synchronous motor (PMSM). The method does not need a low-pass filter, and has strong robustness and a simple calculation method. According to the relationship between high-frequency current response and rotor position angle θ, the rotor position angle can be obtained by arctangent and linear formulae. Finally, the magnetic polarity of the rotor is distinguished according to the change of inductance. In this method, the arctangent function is used to eliminate the filtering process and reduce the influence of the parameter deviation of the motor system on the detection accuracy of the initial position. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the method.


2020 ◽  
Vol 10 (21) ◽  
pp. 7397
Author(s):  
Salih Baris Ozturk ◽  
Omer Cihan Kivanc ◽  
Ahmet Aksoz ◽  
Omar Hegazy

A PMSM drive with an incremental encoder or using sensorless control requires alignment to a predetermined rotor position (initial position) or initial rotor position detection at start-up. It is desired to lock the rotor to a known state (usually zero angle) at start-up if the initial rotor position detection is not available or difficult to obtain. In this work, a simple and proper zero angle initial rotor position alignment of four-switch three-phase (FSTP) inverter-based PMSM drive is proposed. Low-frequency voltage signal is applied to the d-axis voltage reference of the open-loop FSTPI based PMSM drive scheme without requiring complex trigonometric calculations, PI current regulators and current sensing. Therefore, fluctuated capacitor voltages at the DC-link are obtained allowing current flown through phase a locking the rotor with zero angle, properly. The proposed method has been implemented using a low-cost FSTP voltage source inverter (VSI) for PMSM drive with a floating-point TMS320F28335 DSP. The effectiveness and the feasibility of the proposed zero angle initial rotor position alignment method for PMSM driven by FSTP inverter have been demonstrated through experimental results.


2012 ◽  
Vol 150 ◽  
pp. 100-104
Author(s):  
Tao Zhang ◽  
Wei Ni ◽  
Hui Ping Zhang ◽  
Sha Sha Wu

When the permanent magnet synchronous motor is operated at a low speed. The rotor position and speed are very difficult to estimate using the extended flux or back EMF method. A novel modified current slope estimating method is used to estimate the rotor position and speed in low speed in this paper. The mathematical models of an interior permanent magnet synchronous motor (IPMSM) are deduced. The basic principle of modified current slope method is introduced. The simulation control system is built based on Matlab and a TMS320LF2407 digital signal processor is used to execute the rotor position and speed estimation. The experimental and simulation results have shown that the rotor position and speed can be accurately estimated in a low-speed operating region.


Sign in / Sign up

Export Citation Format

Share Document