scholarly journals Observer Design for Nonlinear Invertible System from the View of Both Local and Global Levels

2020 ◽  
Vol 10 (22) ◽  
pp. 7966
Author(s):  
Mei Zhang ◽  
Qinmu Wu ◽  
Xiangping Chen ◽  
Boutaïeb Dahhou ◽  
Zetao Li

This paper emphasizes the importance of the influences of local dynamics on the global dynamics of a control system. By considering an actuator as an individual, nonlinear subsystem connected with a nonlinear process subsystem in cascade, a structure of interconnected nonlinear systems is proposed which allows for global and local supervision properties of the interconnected systems. To achieve this purpose, a kind of interconnected observer design method is investigated, and the convergence is studied. One major difficulty is that a state observation can only rely on the global system output at the terminal boundary. This is because the connection point between the two subsystems is considered unable to be measured, due to physical or economic reasons. Therefore, the aim of the interconnected observer is to estimate the state vector of each subsystem and the unmeasurable connection point. Specifically, the output used in the observer of the actuator subsystem is replaced by the estimation of the process subsystem observer, while the estimation of this interconnection is treated like an additional state in the observer design of the process subsystem. Expression for this new state is achieved by calculating the derivatives of the output equation of the actuator subsystem. Numerical simulations confirm the effectiveness and robustness of the proposed observer, which highlight the significance of the work compared with state-of-the-art methods.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


2010 ◽  
Vol 24 (22) ◽  
pp. 4325-4331
Author(s):  
XING-YUAN WANG ◽  
JUN-MEI SONG

This paper studies the hyperchaotic Rössler system and the state observation problem of such a system being investigated. Based on the time-domain approach, a simple observer for the hyperchaotic Rössler system is proposed to guarantee the global exponential stability of the resulting error system. The scheme is easy to implement and different from the other observer design that it does not need to transmit all signals of the dynamical system. It is proved theoretically, and numerical simulations show the effectiveness of the scheme finally.


2010 ◽  
Vol 37-38 ◽  
pp. 9-13
Author(s):  
Hong Xin Wang ◽  
Ning Dai

A non-iterative design method about high order intermittent mechanisms is presented. The mathematical principle is that a compound function produced by two basic functions, and then one to three order derivatives of the compound function are all zeroes when one order derivative of each basic function is zero at the same moment. The design method is that a combined mechanism is constructed by six bars; the displacement functions of the front four-bar and back four-bar mechanisms are separately built, let one order derivatives of two displacement functions separately be zero at the same moment, and then get geometrical relationships and solution on the intermittent mechanism. A design example shows that this method is simpler and transmission characteristics are better than optimization method.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jian Shen ◽  
Qingyu Zhu ◽  
Xiaoguang Wang ◽  
Pengyun Chen

In this paper, the typical fault estimation and dynamic analysis are presented for a leader-follower unmanned aerial vehicle (UAV) formation system with external disturbances. Firstly, a dynamic model with proportional navigation guidance (PNG) control of the UAV formation is built. Then, an intermediate observer design method is adopted to estimate the system states and faults simultaneously. Based on the graph theory, the topology relationship between each node in the UAV formation has been also analyzed. The estimator and the system error have been created. Moreover, the typical faults, including the components failure, airframe damage, communication failure, formation collision, and environmental impact, are also discussed for the UAV system. Based on the fault-tolerant strategy, five familiar fault models are proposed from the perspectives of fault estimation, dynamical disturbances, and formation cooperative control. With an analysis of the results of states and faults estimation, the actuator faults can be estimated precisely with component failure and wind disturbances. Furthermore, the basic dynamic characteristics of the UAV formation are discussed. Besides, a comparison of two cases related to the wind disturbance has been accomplished to verify the performance of the fault estimator and controller. The results illustrate the credibility and applicability of the fault estimation and dynamic control strategies for the UAV system which are proposed in this paper. Finally, an extension about the UAV formation prognostic health management system is expounded from the point of view of the fault-tolerant control, dynamic modeling, and multifault estimation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Yeong-Jeu Sun

The generalized Rössler hyperchaotic systems are presented, and the state observation problem of such systems is investigated. Based on the differential inequality with Lyapunov methodology (DIL methodology), a nonlinear observer design for the generalized Rössler hyperchaotic systems is developed to guarantee the global exponential stability of the resulting error system. Meanwhile, the guaranteed exponential decay rate can be accurately estimated. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of proposed approach.


2019 ◽  
Vol 291 ◽  
pp. 01001
Author(s):  
Yahui Li ◽  
Feng Gao ◽  
Franco Bernelli-Zazzera ◽  
Zeyou Tong ◽  
Fugui Li ◽  
...  

Adaptive backstepping methodology is a powerful tool for nonlinear systems, especially for strict-feedback ones, but its robustness still needs improvements. In this paper, combined with sliding mode control (SMC), a new backstepping design method is proposed to guarantee the robustness. In this method, based on the novel combining method, the auxiliary controller is introduced only in the final step of the real controller, unlike traditional methods, which usually all include an auxiliary controller in every de-signing step to guarantee the robustness of the closed-loop systems. The novel combing methods can avoid calculating multiple and high-order derivatives of the auxiliary controllers in the intermediate steps, low-ering the computational burden in evaluating the controller. The effectiveness of the proposed approach is illustrated from simulation results.


Sign in / Sign up

Export Citation Format

Share Document