scholarly journals A Clustering-Based Hybrid Support Vector Regression Model to Predict Container Volume at Seaport Sanitary Facilities

2020 ◽  
Vol 10 (23) ◽  
pp. 8326
Author(s):  
Juan Jesús Ruiz-Aguilar ◽  
José Antonio Moscoso-López ◽  
Daniel Urda ◽  
Javier González-Enrique ◽  
Ignacio Turias

An accurate prediction of freight volume at the sanitary facilities of seaports is a key factor to improve planning operations and resource allocation. This study proposes a hybrid approach to forecast container volume at the sanitary facilities of a seaport. The methodology consists of a three-step procedure, combining the strengths of linear and non-linear models and the capability of a clustering technique. First, a self-organizing map (SOM) is used to decompose the time series into smaller clusters easier to predict. Second, a seasonal autoregressive integrated moving averages (SARIMA) model is applied in each cluster in order to obtain predicted values and residuals of each cluster. These values are finally used as inputs of a support vector regression (SVR) model together with the historical data of the cluster. The final prediction result integrates the prediction results of each cluster. The experimental results showed that the proposed model provided accurate prediction results and outperforms the rest of the models tested. The proposed model can be used as an automatic decision-making tool by seaport management due to its capacity to plan resources in advance, avoiding congestion and time delays.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Gwo-Fong Lin ◽  
Tsung-Chun Wang ◽  
Lu-Hsien Chen

This study describes the development of a reservoir inflow forecasting model for typhoon events to improve short lead-time flood forecasting performance. To strengthen the forecasting ability of the original support vector machines (SVMs) model, the self-organizing map (SOM) is adopted to group inputs into different clusters in advance of the proposed SOM-SVM model. Two different input methods are proposed for the SVM-based forecasting method, namely, SOM-SVM1 and SOM-SVM2. The methods are applied to an actual reservoir watershed to determine the 1 to 3 h ahead inflow forecasts. For 1, 2, and 3 h ahead forecasts, improvements in mean coefficient of efficiency (MCE) due to the clusters obtained from SOM-SVM1 are 21.5%, 18.5%, and 23.0%, respectively. Furthermore, improvement in MCE for SOM-SVM2 is 20.9%, 21.2%, and 35.4%, respectively. Another SOM-SVM2 model increases the SOM-SVM1 model for 1, 2, and 3 h ahead forecasts obtained improvement increases of 0.33%, 2.25%, and 10.08%, respectively. These results show that the performance of the proposed model can provide improved forecasts of hourly inflow, especially in the proposed SOM-SVM2 model. In conclusion, the proposed model, which considers limit and higher related inputs instead of all inputs, can generate better forecasts in different clusters than are generated from the SOM process. The SOM-SVM2 model is recommended as an alternative to the original SVR (Support Vector Regression) model because of its accuracy and robustness.


2018 ◽  
Vol 10 (10) ◽  
pp. 3434 ◽  
Author(s):  
Omer Azeez ◽  
Biswajeet Pradhan ◽  
Helmi Shafri

Transportation infrastructures play a significant role in the economy as they provide accessibility services to people. Infrastructures such as highways, road networks, and toll plazas are rapidly growing based on changes in transportation modes, which consequently create congestions near toll plaza areas and intersections. These congestions exert negative impacts on human health and the environment because vehicular emissions are considered as the main source of air pollution in urban areas and can cause respiratory and cardiovascular diseases and cancer. In this study, we developed a hybrid model based on the integration of three models, correlation-based feature selection (CFS), support vector regression (SVR), and GIS, to predict vehicular emissions at specific times and locations on roads at microscale levels in an urban areas of Kuala Lumpur, Malaysia. The proposed model comprises three simulation steps: first, the selection of the best predictors based on CFS; second, the prediction of vehicular carbon monoxide (CO) emissions using SVR; and third, the spatial simulation based on maps by using GIS. The proposed model was developed with seven road traffic CO predictors selected via CFS (sum of vehicles, sum of heavy vehicles, heavy vehicle ratio, sum of motorbikes, temperature, wind speed, and elevation). Spatial prediction was conducted based on GIS modelling. The vehicular CO emissions were measured continuously at 15 min intervals (recording 15 min averages) during weekends and weekdays twice per day (daytime, evening-time). The model’s results achieved a validation accuracy of 80.6%, correlation coefficient of 0.9734, mean absolute error of 1.3172 ppm and root mean square error of 2.156 ppm. In addition, the most appropriate parameters of the prediction model were selected based on the CFS model. Overall, the proposed model is a promising tool for traffic CO assessment on roads.


Proceedings ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 63
Author(s):  
Yan-Ru Jhuo ◽  
Chi-Yu Chen ◽  
Yu-Hsuan Yang ◽  
Hsing-Chuan Hsieh ◽  
Yuh-Jye Lee

Thanks to the advances of the Internet of Things (IoTs), more and more wireless sensor networks applications have been realized. One of the fundamental but crucial applications is the continuous monitoring of environmental factors including temperature, humidity, illumination, etc. We develop a nonlinear regression model which takes spatial and temporal information into account to construct a globally three-dimensional heat map for a closed space based on very sparse sensor deployment. However, fitting the whole-space heat map with a very limited number of sensor observations gives a very poor estimation when we use a nonlinear model. We call it the coverage hole problem. We utilize the uniform experimental design which is well known in industrial statistics to allocate the synthetic sensors. We estimate those synthetic sensor readings on the basis of linear model locally. We then apply ε -SSVR, a nonlinear support vector regression model to fit the globally three-dimensional heat map by combining real sensor and synthetic sensor readings. The numerical results demonstrate our proposed model can enhance the accuracy significantly.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1102
Author(s):  
Shiguang Zhang ◽  
Chao Liu ◽  
Wei Wang ◽  
Baofang Chang

In this article, it was observed that the noise in some real-world applications, such as wind power forecasting and direction of the arrival estimation problem, does not satisfy the single noise distribution, including Gaussian distribution and Laplace distribution, but the mixed distribution. Therefore, combining the twin hyperplanes with the fast speed of Least Squares Support Vector Regression (LS-SVR), and then introducing the Gauss–Laplace mixed noise feature, a new regressor, called Gauss-Laplace Twin Least Squares Support Vector Regression (GL-TLSSVR), for the complex noise. Subsequently, we apply the augmented Lagrangian multiplier method to solve the proposed model. Finally, we apply the short-term wind speed data-set to the proposed model. The results of this experiment confirm the effectiveness of our proposed model.


2020 ◽  
Vol 15 ◽  
Author(s):  
Xiaoyi Guo ◽  
Wei Zhou ◽  
Bin Shi ◽  
Xiaohua Wang ◽  
Aiyan Du ◽  
...  

Background: Dry Weight (DW) is the lowest weight after dialysis, and patients with lower weight usually have symptoms of hypotension and shock. Several clinical-based approaches have been presented to assess dry weight of hemodialysis patients. However, these traditional methods all depend on special instruments and professional technicians. Objective: In order to avoid this limitation, we want to find a machine-independent way to assess dry weight, so we collected some clinical influencing characteristic data and constructed a Machine Learning-based (ML) model to predict the dry weight of hemodialysis patients. Methods: In this paper, 476 hemodialysis patients' demographic data, anthropometric measurements, and Bioimpedance spectroscopy (BIS) were collected. Among them, these patients' age, sex, Body Mass Index (BMI), Blood Pressure (BP) and Heart Rate (HR) and Years of Dialysis (YD) were closely related to their dry weight. All these relevant data were used to enter the regression equation. Multiple Kernel Support Vector Regression-based on Maximizes the Average Similarity (MKSVRMAS) model was proposed to predict the dry weight of hemodialysis patients. Result: The experimental results show that dry weight is positively correlated with BMI and HR. And age, sex, systolic blood pressure, diastolic blood pressure and hemodialysis time are negative correlated with dry weight. What's more, the Root Mean Square Error (RMSE) of our model is 1.3817. Conclusion: Our proposed model could serve as a viable alternative of dry weight estimation for hemodialysis patients, thus providing a new way for the clinic.


2021 ◽  
pp. 147592172110053
Author(s):  
Qian Ji ◽  
Li Jian-Bin ◽  
Liu Fan-Rui ◽  
Zhou Jian-Ting ◽  
Wang Xu

The seven-wire strands are the crucial components of prestressed structures, though their performance inevitably degrades with the passage of time. The ultrasonic guided wave methods have been intensely studied, owing to its tremendous potential for full-scale applications, among the existing nondestructive testing methods, for evaluating the stress status of strands. We have employed the theoretical and finite element methods to solve the dispersion curve of single wire and steel strands under various boundary conditions. Thereafter, the singular value decomposition was adopted to work with the simulated and experimental signals for extracting a feature vector that carries valuable stress status information. The effectiveness of the vector was verified by analyzing the relationship between the vector and the stress level. The vector was also used as an input to establish a support vector regression model. The accuracy of the model has been discussed for different sample sizes. The results show that the fundamental mode dispersion curve offset on the high-frequency part and cut-off frequency increases as the boundary constraints enhance. Simulated and experimental results have demonstrated the effectiveness and potential of the proposed support vector regression method for evaluating the stress level in the strands. This method performs well even at low stress levels and the reliability can be enhanced by adding more samples.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1320
Author(s):  
Yuanyuan Sun ◽  
Gongde Xu ◽  
Na Li ◽  
Kejun Li ◽  
Yongliang Liang ◽  
...  

Both poor cooling methods and complex heat dissipation lead to prominent asymmetry in transformer temperature distribution. Both the operating life and load capacity of a power transformer are closely related to the winding hotspot temperature. Realizing accurate prediction of the hotspot temperature of transformer windings is the key to effectively preventing thermal faults in transformers, thus ensuring the reliable operation of transformers and accurately predicting transformer operating lifetimes. In this paper, a hot spot temperature prediction method is proposed based on the transformer operating parameters through the particle filter optimization support vector regression model. Based on the monitored transformer temperature, load rate, transformer cooling type, and ambient temperature, the hotspot temperature of a dry-type transformer can be predicted by a support vector regression method. The hyperparameters of the support vector regression are dynamically optimized here according to the particle filter to improve the optimization accuracy. The validity and accuracy of the proposed method are verified by comparing the proposed method with a traditional support vector regression method based on the real operating data of a 35 kV dry-type transformer.


Sign in / Sign up

Export Citation Format

Share Document