scholarly journals Inverted F Type Antenna Design for the Cattle Activity and Estrus Detection Sensor Module

2020 ◽  
Vol 11 (1) ◽  
pp. 298
Author(s):  
Youchung Chung

In this paper, an inverted F type antenna (IFA) for ZigBee communication of a sensor board has been designed and optimized, and it replaces the chip antenna on an RF (Radio Frequency) module that is not performing well enough for the ZigBee communication. The sensor board detects cattle behavior and identifies the breeding (estrus) period and transmits the data to the main station by the RF (Radio Frequency) module and IFA antenna. The proposed and optimized TRx (transmitting/receiving) IFA antenna of the ZigBee communication module has a return loss of −19 dB and a gain of 1.6 dB at 2.45 GHz. The size is about 2.5 × 0.5 cm in width and vertical length, and the height is 0.55 cm. The strength of signals with the chip antenna and the IFA antenna have been measured and compared. There is about a 20 dB enhancement with the IFA antenna compared to the chip antenna. The antenna is designed and applied to the RF transmission and reception (TRx) module. This antenna and sensor module can be applied to livestock in general as well as cattle.

Author(s):  
Zheng Xiao

Background: In order to study the interference of wired transmission mode on robot motion, a mobile robot attitude calculation and debugging system based on radio frequency (RF) technology is proposed. Methods: Microcontroller STM32 has been used as the control core for the attitude information of the robot by using MEMS gyroscope and accelerometer. The optimal attitude Angle of the robot is calculated through nRF24L01 which is the core of the wireless communication module, attitude acquisition module and wireless data communication upper computer application platform. Results: The results shows that the positioning accuracy is better than±5mm. Conclusion: The experimental results show that the proposed attitude solving and debugging system of mobile robot based on RF technology has better reliability and real-time performance. The propped model is convenient for debugging of mobile robot system and has certain engineering application value.


In this article, a novel offset microstrip line feed Rectangular Dielectric Resonator Antenna is used for bandwidth enhancement. The parameters such as Bandwidth, Return Loss and Radiation efficiency are improved in the proposed antenna. A comparison is also shown for the proposed feed structure with and without conformal strips. The improvement in the bandwidth is observed from 25% to 65% by optimizing the antenna design parameters. It works in three frequency bands, that is, 2.03-3.69 GHz, 3.86-7.26 GHz, and 7.32-9.26 GHz. The proposed antenna is appropriate for WIMAX/WLAN applications.


Author(s):  
Petrus Kerowe Goran ◽  
Eka Setia Nugraha

Wireless Fidelity (WiFi) devices are often used to access the internet network, both for working and in information searching. Accessing the internet can be administered anywhere provided that the area is within the WiFi devices range. A WiFi device uses 2.4 GHz and 5 GHz operating frequencies. There were several methods employed in the previous studies so that an antenna design could work in two different frequencies, i.e., winding bowtie method, Sierpinski method, and double-circular method. This paper employed a simple method, the slit method. The objective of this paper is to discover a simple antenna model that works on 2.4 GHz and 5 GHz frequencies. This paper employed a square patch microstrip antenna with a slit method. The dimensions of the designed square patch microstrip antenna were 42.03 mm × 27.13 mm × 0.035 mm. The antenna worked at 2.4 GHz and 5 GHz frequencies. The obtained simulation results after the optimization showed that the square patch microstrip antenna using the slit method acquired a value of S11 (return loss) of -10.15 dB at a frequency of 2.4 GHz and -37.315 dB at a frequency of 5 GHz.


Robotica ◽  
2021 ◽  
pp. 1-24
Author(s):  
Heesik Jang ◽  
Ho Moon Kim ◽  
Min Sub Lee ◽  
Yong Heon Song ◽  
Yoongeon Lee ◽  
...  

Abstract This paper presents a modularized autonomous pipeline inspection robot called MRINSPECT VII+, which we recently developed. MRINSPECT VII+ is aimed at inspect in-service urban gas pipelines with a diameter of 200 mm. The robot consists of five basic modules: driving, sensing, joint, and battery modules. For nondestructive testing (NDT), an NDT module can be added to the system. The driving module uses a multiaxial differential gear mechanism to provide traction forces to the robot. The sensor module recognizes the pipeline element using position-sensitive detector (PSD) sensors and a CCD camera. The control module contains a computing unit and manages the robot’s autonomous navigation. The battery module supplies power to the system. Each module is connected via backdrivable active joint modules, which provide flexibility while moving inside narrow pipelines. Additionally, the wireless communication module helps the system communicate with the ground station. We tested MRINSPECT VII+ in real pipeline environments and validated its feasibility successfully.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000608-000612
Author(s):  
John Doroshewitz ◽  
Amanpreet Kaur ◽  
Jeffrey Nanzer ◽  
Premjeet Chahal

Abstract A Quick Response (QR) Code style antenna is presented. Such an antenna can provide two-level authentication, both optically through the current QR technology, plus a radio frequency (RF) signature from microstrip patch antenna designed from the QR signature using copper patterning. The antenna is designed through the pixilation of a patch antenna where conductor is present in the dark regions of the optical QR code. The QR based antenna design has a unique frequency and radiation signature and can be used for RF authentication of products. The design process for the pixilation is presented as well as fabrication and measured results of a QR code antenna design. The possibility of using a Genetic Algorithm to create a “library” of acceptable antenna results in accordance with the QR data it represents is also discussed.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3297-3300
Author(s):  
Yin Wang

Design using MSP430 microcontroller core, control GSM wireless communication module implements remote car alarm warning systems, from system components, as well as hardware and software design works done in detail, the system triggers an alarm through the sensor module, enter through the microcontroller to TC35i AT command so that it can promptly send a short message to alert the owner, breaking the traditional alarm distance limitations, with good market prospects.


Sign in / Sign up

Export Citation Format

Share Document