scholarly journals Study on Burr Formation and Tool Wear in Drilling CFRP and Its Hybrid Composites

2021 ◽  
Vol 11 (1) ◽  
pp. 384
Author(s):  
Jeong Hwan Lee ◽  
Jun Cong Ge ◽  
Jun Hee Song

As contemporary emerging materials, fiber-reinforced plastics/polymers (FRP) are widely used in aerospace automotive industries and in other fields due to their high strength-to-weight ratio, high stiffness-to-weight ratio, high corrosion resistance, low thermal expansion and other properties. Drilling is the most frequently used process in industrial operation for polymer composite laminates, owing to the need for joining structures. However, it is a great challenge for operators to drill holes in FRP materials, due to the non-homogenous and anisotropic properties of fibers. Various damages, such as delamination, hole shrinkage, and burr and tool wear, occur due to the heterogeneous and anisotropic nature of composite laminates. Therefore, in this study, carbon fiber reinforced polymer (CFRP)/aramid fiber reinforced polymer (AFRP) hybrid composites (C-AFRP) were successfully synthesized, and their drilling characteristics, including burr generation and tool wear, were also mainly investigated. The drilling characteristics of CFRP and C-AFRP were compared and analyzed for the first time under the same operating conditions (cutting tool, spindle speed, feed rate). The experimental results demonstrated that C-AFRP had higher tensile strength and good drilling characteristics (low thrust and less tool wear) compared with CFRP. As a lightweight and high-strength structural material, C-AFRP hybrid composites have great potential applications in the automobile and aerospace industries after the slight processing of burrs generated during drilling.

Author(s):  
Jinyang Xu ◽  
Qinglong An ◽  
Ming Chen

In modern manufacturing sectors, mechanical drilling of high-strength carbon fiber–reinforced polymer represents the most challenging task as compared to conventional low-strength carbon fiber–reinforced polymer drilling due to the extremely superior mechanical/physical properties involved. The poor machinability of the composite usually results in serious geometric imperfection and physical damage in drilling and hence leads to a large amount of part rejections. In this article, an experimental investigation concerning the cutting-induced damage when drilling high-strength carbon fiber–reinforced polymer laminates was presented. The studied composite specimen was a newly developed high-strength T800S/250F carbon fiber–reinforced polymer composite. A special concentration was made to inspect and characterize the phenomena of various cutting-induced damage promoted in the material drilling. The work focused on the study of the influence of cutting parameters on the distribution and extent of hole damage formation. The experimental results highlighted the most influential factor of feed rate and tool wear in affecting the final extent of induced hole damage when drilling high-strength T800S/250F carbon fiber–reinforced polymer. For minimizing the various damage formation, optimal cutting parameters (high spindle speed and low feed rate) and rigorous control of tool wear should be seriously taken when drilling this material.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1667 ◽  
Author(s):  
Dipen Rajak ◽  
Durgesh Pagar ◽  
Pradeep Menezes ◽  
Emanoil Linul

Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.


Author(s):  
Pierre Mertiny ◽  
Mohammad Bashar ◽  
Avinash Parashar ◽  
Kulvinder Juss

Fiber-reinforced polymer (FRP) piping has been recognized for excellent corrosion resistance and high specific properties such as its strength-to-weight ratio. Despite the positive characteristics, FRP piping has limited, albeit growing utilization in industrial service. This is in part due to initial cost when compared to conventional metallic pipe. Reduced life cycle expenditures in conjunction with operational advantages may foster an increased implementation of FRP piping. This may be achieved through installation procedures, longevity and operational capabilities that are superior to those related to metallic piping. The present article reviews recent technological advances relating to these attributes, namely improved joining methods; enhanced wear, corrosion and damage resistance; and embedded monitoring systems for wear and other parameters.


Sign in / Sign up

Export Citation Format

Share Document