scholarly journals Effect of Hydrogen Addition on the Energetic and Ecologic Parameters of an SI Engine Fueled by Biogas

2021 ◽  
Vol 11 (2) ◽  
pp. 742
Author(s):  
Saugirdas Pukalskas ◽  
Donatas Kriaučiūnas ◽  
Alfredas Rimkus ◽  
Grzegorz Przybyła ◽  
Paweł Droździel ◽  
...  

The global policy solution seeks to reduce the usage of fossil fuels and greenhouse gas (GHG) emissions, and biogas (BG) represents a solutions to these problems. The use of biogas could help cope with increased amounts of waste and reduce usage of fossil fuels. Biogas could be used in compressed natural gas (CNG) engines, but the engine electronic control unit (ECU) needs to be modified. In this research, a spark ignition (SI) engine was tested for mixtures of biogas and hydrogen (volumetric hydrogen concentration of 0, 14, 24, 33, and 43%). In all experiments, two cases of spark timing (ST) were used: the first for an optimal mixture and the second for CNG. The results show that hydrogen increases combustion quality and reduces incomplete combustion products. Because of BG’s lower burning speed, the advanced ST increased brake thermal efficiency (BTE) by 4.3% when the engine was running on biogas. Adding 14 vol% of hydrogen (H2) increases the burning speed of the mixture and enhances BTE by 2.6% at spark timing optimal for CNG (CNG ST) and 0.6% at the optimal mixture ST (mixture ST). Analyses of the rate of heat release (ROHR), temperature, and pressure increase in the cylinder were carried out using utility BURN in AVL BOOST software.

2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


2021 ◽  
Author(s):  
Shouvik Dev ◽  
David Stevenson ◽  
Amin Yousefi ◽  
Hongsheng Guo ◽  
James Butler

Abstract Diesel fueled generators are widely used for power generation in remote and/or off-grid communities. In such communities, local organic waste streams can be used to generate biogas which can be used to replace diesel used by diesel generators to lower fuel cost and reduce greenhouse gas (GHG) emissions. Diesel powered generators can be easily retrofitted with a biogas dosing line in the engine intake to introduce biogas, but appropriate optimization would be of great help to further improve generator performance and reduce GHG emissions. The objective of this research is to demonstrate simplified optimization methods that can reduce GHG emissions (carbon dioxide and methane) from such retrofitted dual-fuel engines under various biogas compositions. The study was conducted on a modern 30 kilowatt (kW) generator using an electronically controlled, four-stroke, four-cylinder, direct injection, turbo-charged diesel engine. The engine was operated with the factory electronic control unit (ECU) and a programmable ECU which allowed for control of the fuel injections and exhaust gas recirculation (EGR) valve. Biogas was simulated by using natural gas (with more than 95% methane by volume) which was diluted with either carbon dioxide or nitrogen. This study consisted of two areas. The first one was the comparison of the engine performance when operating with biogas using the factory ECU and the programmable ECU with user optimized fuel injection. The second one was the influence of volume fraction of carbon dioxide or nitrogen in the biogas. The test results reinforced the importance of optimizing the diesel injections when the engine was operated in the biogas-diesel dual-fuel mode to ensure complete combustion and achieve a reduction in GHG emissions. Increasing nitrogen fraction had a minimal effect on the emissions, but increasing carbon dioxide fraction caused the NOx and methane emissions to decrease, and the indicated thermal efficiency to increase.


2018 ◽  
Vol 15 (6) ◽  
pp. 710-718
Author(s):  
Syed Azam Pasha Quadri ◽  
Girish Srivatsa Rentala ◽  
Raghavendra Sarap

Purpose Over past decades, the fossil fuel reserves in the world have been decreasing at an alarming rate and a lack of crude oil is expected in the early decades of this century. Also, the eco-neutral pollutants such as carbon monoxide (CO), oxides of nitrigen (NOx) and unburnt hydrocarbons (UHC) are also increasing. This calls for innovative research in non-conventional fuels to replace fossil fuels. Hydrogen is one such fuel which has an exceptional combustion property and appears to be proving itself as the best transportation fuel of the future. On the other hand, compressed natural gas(CNG) has already been credited as a remarkable fuel for its better emission characteristics and has been implemented as a transportation fuel in metros. Therefore, the use of hydrogen blended with natural gas seems to be a viable alternative to pure fossil fuels because of the expected reduction of the total pollutants and increase of efficiency. This paper aims to investigate this issue. Design/methodology/approach In the present experimental investigation, 10 and 20 per cent of hydrogen–CNG mixture(HCNG) by mass of fuel is inducted into the combustion chamber in conjunction with air in HCNG–diesel dual fuel mode. The variation in injection opening pressure is assessed to optimize the performance and emission characteristics. Findings Experiments were conducted at three different injection opening pressures, i.e. 200, 220 and 240 bar, at full-load condition and the performance characteristics were calculated. The effect of injection operating pressure(IOP) on emissions were measured and compared with pure diesel mode. Originality/value Brake thermal efficiency (BTE) was increased by 1.2 per cent at 220 bar. Minimum BSFC of 0.2302 kg/kWh, 0.2114 kg/kWh was noticed for 220 bar with a changing ratio of 20 per cent of HCNG. It was noticed that CO and UHC decreased with variation in IOP and HCNG content in the blend. However, there was an increase in NOx emissions.


2011 ◽  
Vol 383-390 ◽  
pp. 6128-6133
Author(s):  
Yi Zheng ◽  
Shi Xi Yang ◽  
Yi Zheng ◽  
Hong Guang Zhang

In this paper electronic control unit (ECU) used in vehicle-used compressed natural gas engine is developed independently. A series of start experiments are done with refitted JL465Q5 engine. Experimental monitoring system is developed as an interface connecting staff and single chip. Speed acquisition system is developed to record start process accurately in real time. The test results indicate that, more concentrated mixture is necessary when start speed is lower. Higher engine coolant temperature is conductive to cold start for natural gas engine. Multiple ignition control and ignition energy improvement is conductive to start successfully for natural gas engine. The results showed that electronic control unit (ECU) and speed acquisition system developed independently is practical and feasible.


2021 ◽  
Vol 11 (14) ◽  
pp. 6379
Author(s):  
Donatas Kriaučiūnas ◽  
Saugirdas Pukalskas ◽  
Alfredas Rimkus ◽  
Dalibor Barta

Biogas is one of the alternative solutions that could reduce the usage of fossil fuels and production of greenhouse gas emissions, as biogas is considered as an alternative fuel with a short carbon cycle. During biogas production, organic matter is decomposed during an anaerobic digestion process. Biogas mainly consists of methane and carbon dioxide, of which the ratio varies depending on the raw material and parameters of the production process. Therefore, engine parameters should be adjusted in relationship with biogas composition. In this research, a spark ignition engine was tested for mixtures of biogas with 0 vol%, 20 vol%, 40 vol% and 50 vol% of CO2. In all experiments, two cases of spark timing (ST) were used; the first one is a constant spark timing (26 crank angle degrees (CAD) before top dead center (BTDC)) and the second one is an advanced spark timing (optimal for biogas mixture). Results show that increasing the CO2 concentration and using constant spark timing increases the mass burned fraction combustion duration by 90%, reduces the in-cylinder pressure and leads to a reduction in the brake thermal efficiency and nitrogen oxides emissions at all measurement points. However, the choice of optimal spark timing increases the brake thermal efficiency as well as hydrocarbon and CO2 emission.


Due to the depletion of conventional fossil fuels and the energy crises with emission problems today, research and development have been concentrated on reducing fuel consumption by using different alternative fuel and reducing a toxic component in combustion products. Liquefied petroleum gas is a suitable fuel for internal combustion engine since the octane number is also high nearly 109 and therefore cars, medium and heavy duty vehicles have been using propane or propane/butane mixture successfully. The engine parameter like engine speed, load, viscosity of oil, cylinder size, brake power, frictional power, indicated power, are considered for comparative analysis for bi-fuel engine fueled by petrol and liquefied petroleum gas for the performance of the test engine and frictional losses. The experiment was carried out with morse procedure to compare the frictional power losses which are always more for liquefied petroleum gas than the petrol.


2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


Author(s):  
Cristian Rostiti ◽  
Yuxing Liu ◽  
Marcello Canova ◽  
Stephanie Stockar ◽  
Gang Chen ◽  
...  

Nonlinear dynamics in the transmission and drive shafts of automotive powertrains, such as backlash, induce significant torque fluctuations at the wheels during tip-in and tip-out transients, deteriorating drivability. Several strategies are currently present in production vehicles to mitigate those effects. However, most of them are based on open-loop filtering of the driver torque demand, leading to sluggish acceleration performance. To improve the torque management algorithms for drivability and customer acceptability, the powertrain controller must be able to compensate for the wheel torque fluctuations without penalizing the vehicle response. This paper presents a novel backlash compensator for automotive drivetrain, realized via real-time model predictive control (MPC). Starting from a high-fidelity driveline model, the MPC-based compensator is designed to mitigate the drive shaft torque fluctuations by modifying the nominal spark timing during a backlash traverse event. Experimental tests were conducted with the compensator integrated into the engine electronic control unit (ECU) of a production passenger vehicle. Tip-in transients at low-gear conditions were considered to verify the ability of the compensator to reduce the torque overshoot when backlash crossing occurs.


Sign in / Sign up

Export Citation Format

Share Document