scholarly journals Analysis of the effect of LPG on the Performance and Frictional Power Loss for SI Engine

Due to the depletion of conventional fossil fuels and the energy crises with emission problems today, research and development have been concentrated on reducing fuel consumption by using different alternative fuel and reducing a toxic component in combustion products. Liquefied petroleum gas is a suitable fuel for internal combustion engine since the octane number is also high nearly 109 and therefore cars, medium and heavy duty vehicles have been using propane or propane/butane mixture successfully. The engine parameter like engine speed, load, viscosity of oil, cylinder size, brake power, frictional power, indicated power, are considered for comparative analysis for bi-fuel engine fueled by petrol and liquefied petroleum gas for the performance of the test engine and frictional losses. The experiment was carried out with morse procedure to compare the frictional power losses which are always more for liquefied petroleum gas than the petrol.

2020 ◽  
Vol 10 (14) ◽  
pp. 4949
Author(s):  
Roberto Ianniello ◽  
Gabriele Di Blasio ◽  
Renato Marialto ◽  
Carlo Beatrice ◽  
Massimo Cardone

Technological and economic concerns correlated to fulfilling future emissions and CO2 standards require great research efforts to define an alternative solution for low emissions and highly efficient propulsion systems. Alternative fuel formulation could contribute to this aim. Liquefied petroleum gas (LPG) with lower carbon content than other fossil fuels and which is easily vaporized at ambient conditions has the advantage of lowering CO2 emissions and optimizing the combustion process. Liquefied petroleum gas characteristics and availability makes the fuel a promising alternative for internal combustion engines. The possible combination of using it in high-efficiency compression ignition engines makes it worth analyzing the innovative method of using LPG as a blend component in diesel. Few relevant studies are detectable in literature in this regard. In this study, two blends containing diesel and LPG, in volume ratios 20/80 and 35/65, respectively, were formulated and utilized. Their effects on combustion and emissions performance were assessed by performing proper experimental tests on a modern light-duty single-cylinder engine test rig. Reference operating points at conventional engine calibration settings were examined. A specific exhaust gas recirculation (EGR) parametrization was performed evaluating the LPG blends’ potential in reducing the smoke emissions at standard engine-out NOx levels. The results confirm excellent NOx-smoke trade-off improvements with smoke reductions up to 95% at similar NOx and efficiency. Unburnt emissions slightly increase, and to acceptable levels. Improvements, in terms of indicated specific fuel consumption (ISFC), are detected in the range of 1–3%, as well as the CO2 decrease proportionally to the mixing ratio.


2018 ◽  
Vol 19 (6) ◽  
pp. 164-169
Author(s):  
Jacek Michalski

For mixture of propane-butane as liquefied petroleum gas are presented its physical and chemical properties, classification, storage, contamination and hazards for humans and the environment. Manufacturing, transport technology and handling safety methods as well as the most important legal acts regarding propane-butane mixture have been characterized.


2021 ◽  
Vol 11 (2) ◽  
pp. 742
Author(s):  
Saugirdas Pukalskas ◽  
Donatas Kriaučiūnas ◽  
Alfredas Rimkus ◽  
Grzegorz Przybyła ◽  
Paweł Droździel ◽  
...  

The global policy solution seeks to reduce the usage of fossil fuels and greenhouse gas (GHG) emissions, and biogas (BG) represents a solutions to these problems. The use of biogas could help cope with increased amounts of waste and reduce usage of fossil fuels. Biogas could be used in compressed natural gas (CNG) engines, but the engine electronic control unit (ECU) needs to be modified. In this research, a spark ignition (SI) engine was tested for mixtures of biogas and hydrogen (volumetric hydrogen concentration of 0, 14, 24, 33, and 43%). In all experiments, two cases of spark timing (ST) were used: the first for an optimal mixture and the second for CNG. The results show that hydrogen increases combustion quality and reduces incomplete combustion products. Because of BG’s lower burning speed, the advanced ST increased brake thermal efficiency (BTE) by 4.3% when the engine was running on biogas. Adding 14 vol% of hydrogen (H2) increases the burning speed of the mixture and enhances BTE by 2.6% at spark timing optimal for CNG (CNG ST) and 0.6% at the optimal mixture ST (mixture ST). Analyses of the rate of heat release (ROHR), temperature, and pressure increase in the cylinder were carried out using utility BURN in AVL BOOST software.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Ebru Aldemir ◽  
Betül Akyel ◽  
A. Ender Altıntoprak ◽  
Rezzan Aydın ◽  
Hakan Coşkunol

Inhalant abuse is a problem that is getting more common all around the world. The increase in prevalence of inhalant abuse escalates morbidity and mortality rates. About 22% of people using inhalant have died at their first attempt. Particularly propane, butane, or propane-butane mixture has highest mortality rates. Sudden sniffing death syndrome, cardiomyopathy, central nervous system toxicity, hematological abnormalities, kidney toxicity, and hepatocellular toxicities are the major complications of inhalant abuse. Herein we present a patient with inhalant use disorder. At the age of 19, after a stressful life event he had unsuccessfully tried to suicide by inhaling LPG (liquefied petroleum gas, a mixture of butane and propane gases). After he realized that he had hallucinations and felt better during the inhalation, he started to abuse it. He was addicted to LPG for 10 years at the time of admission. Besides being dangerous for the society security, this intense level of LPG inhalation (12 liters a day) not giving any physical harm makes this case interesting.


Author(s):  
Serhii Kovalov

The expediency of using vehicles of liquefied petroleum gas as a motor fuel, as com-pared with traditional liquid motor fuels, in particular with diesel fuel, is shown. The advantages of converting diesel engines into gas ICEs with forced ignition with respect to conversion into gas diesel engines are substantiated. The analysis of methods for reducing the compression ratio in diesel engines when converting them into gas ICEs with forced ignition has been carried out. It is shown that for converting diesel engines into gas ICEs with forced ignition, it is advisable to use the Otto thermo-dynamic cycle with a decrease in the geometric degree of compression. The choice is grounded and an open combustion chamber in the form of an inverted axisymmetric “truncated cone” is developed. The proposed shape of the combustion chamber of a gas internal combustion engine for operation in the LPG reduces the geometric compression ratio of D-120 and D-144 diesel engines with an unseparated spherical combustion chamber, which reduces the geometric compression ratio from ε = 16,5 to ε = 9,4. The developed form of the combustion chamber allows the new diesel pistons or diesel pistons which are in operation to be in operation to be refined, instead of making special new gas pistons and to reduce the geometric compression ratio of diesel engines only by increasing the combustion chamber volume in the piston. This method of reducing the geometric degree of compression using conventional lathes is the most technologically advanced and cheap, as well as the least time consuming. Keywords: self-propelled chassis SSh-2540, wheeled tractors, diesel engines D-120 and D-144, gas engine with forced ignition, liquefied petroleum gas (LPG), compression ratio of the internal com-bustion engine, vehicles operating in the LPG.


Author(s):  
A. P. Shaikin ◽  
I. R. Galiev

The article analyzes the influence of chemical composition of hythane (a mixture of natural gas with hydrogen) on pressure in an engine combustion chamber. A review of the literature has showed the relevance of using hythane in transport energy industry, and also revealed a number of scientific papers devoted to studying the effect of hythane on environmental and traction-dynamic characteristics of the engine. We have studied a single-cylinder spark-ignited internal combustion engine. In the experiments, the varying factors are: engine speed (600 and 900 min-1), excess air ratio and hydrogen concentration in natural gas which are 29, 47 and 58% (volume).The article shows that at idling engine speed maximum pressure in combustion chamber depends on excess air ratio and proportion hydrogen in the air-fuel mixture – the poorer air-fuel mixture and greater addition of hydrogen is, the more intense pressure increases. The positive effect of hydrogen on pressure is explained by the fact that addition of hydrogen contributes to increase in heat of combustion fuel and rate propagation of the flame. As a result, during combustion, more heat is released, and the fuel itself burns in a smaller volume. Thus, the addition of hydrogen can ensure stable combustion of a lean air-fuel mixture without loss of engine power. Moreover, the article shows that, despite the change in engine speed, addition of hydrogen, excess air ratio, type of fuel (natural gas and gasoline), there is a power-law dependence of the maximum pressure in engine cylinder on combustion chamber volume. Processing and analysis of the results of the foreign and domestic researchers have showed that patterns we discovered are applicable to engines of different designs, operating at different speeds and using different hydrocarbon fuels. The results research presented allow us to reduce the time and material costs when creating new power plants using hythane and meeting modern requirements for power, economy and toxicity.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


Author(s):  
А.Ю. Боташев ◽  
Р.А. Байрамуков ◽  
Н.У. Бисилов ◽  
Р.С. Малсугенов

Разработана и представлена схема нового устройства, осуществляющего штамповку деталей с нагревом трубной заготовки воздействием продуктов сгорания газообразной топливной смеси. В качестве топливной смеси может использоваться горючий газ - смесь воздуха с метаном или с пропан-бутаном. Представлены результаты исследования процесса нагрева трубной заготовки воздействием продуктов сгорания. Исследование проведено на базе уравнений конвективного теплообмена, теплового баланса и термодинамики. Получена зависимость для определения температуры нагрева трубной заготовки. Установлено, что температура заготовки зависит от материала и геометрических размеров заготовки, а также давления топливной смеси. Данное устройство обеспечивает нагрев до интервала горячей обработки стальных трубных заготовок диаметром более 150 мм при толщине стенки до 1,2…1,5 мм, а при диаметре более 300 мм - толщиной до 2,0…2,5 мм. Для нагрева трубных заготовок из цветных металлов и сплавов (например, алюминия и меди) требуется меньшее давление топливной смеси, чем для стали, благодаря этому обеспечивается нагрев заготовок значительно большей толщины, в частности, заготовок из алюминия толщиной до 6 мм We developed a diagram of a new device for stamping parts by heating a pipe billet by the action of combustion products of a gaseous fuel mixture. A combustible gas can be used as a fuel mixture - a mixture of air with methane or with propane-butane. We present the results of a study of the process of heating a pipe billet by the action of combustion products. We carried out the study on the basis of the equations of convective heat transfer, heat balance and thermodynamics. We obtained the dependence for determining the heating temperature of the pipe billet. We found that the temperature of the workpiece depends on the material and geometric dimensions of the workpiece, as well as the pressure of the fuel mixture. This device provides heating to the hot working interval of steel pipe billets with a diameter of more than 150 mm with a wall thickness of up to 1.2 ... 1.5 mm, and with a diameter of more than 300 mm - with a thickness of up to 2.0 ... 2.5 mm. To heat tubular billets made of non-ferrous metals and alloys (for example, aluminum and copper), a lower pressure of the fuel mixture is required than for steel, due to this, billets of a much greater thickness are heated, in particular, billets made of aluminum with a thickness of up to 6 mm


2021 ◽  
Vol 94 (7) ◽  
pp. 927-933
Author(s):  
A. V. Ozerskii ◽  
A. V. Nikitin ◽  
Ya. S. Zimin ◽  
V. I. Savchenko ◽  
I. V. Sedov ◽  
...  

Author(s):  
Reza Ziazi ◽  
Kasra Mohammadi ◽  
Navid Goudarzi

Hydrogen as a clean alternative energy carrier for the future is required to be produced through environmentally friendly approaches. Use of renewables such as wind energy for hydrogen production is an appealing way to securely sustain the worldwide trade energy systems. In this approach, wind turbines provide the electricity required for the electrolysis process to split the water into hydrogen and oxygen. The generated hydrogen can then be stored and utilized later for electricity generation via either a fuel cell or an internal combustion engine that turn a generator. In this study, techno-economic evaluation of hydrogen production by electrolysis using wind power investigated in a windy location, named Binaloud, located in north-east of Iran. Development of different large scale wind turbines with different rated capacity is evaluated in all selected locations. Moreover, different capacities of electrolytic for large scale hydrogen production is evaluated. Hydrogen production through wind energy can reduce the usage of unsustainable, financially unstable, and polluting fossil fuels that are becoming a major issue in large cities of Iran.


Sign in / Sign up

Export Citation Format

Share Document