scholarly journals Observer-Based Fuzzy Controller Design for Nonlinear Discrete-Time Singular Systems via Proportional Derivative Feedback Scheme

2021 ◽  
Vol 11 (6) ◽  
pp. 2833
Author(s):  
Wen-Jer Chang ◽  
Ming-Hsuan Tsai ◽  
Chin-Lin Pen

This paper investigates the observer-based fuzzy controller design method for nonlinear discrete-time singular systems that are represented by Takagi-Sugeno (T-S) fuzzy models. At first, the nonlinearity can be well-approximated with several local linear input-output relationships. The parallel distributed compensation (PDC) technology and the proportional derivative (PD) feedback scheme are then employed to construct the observer-based fuzzy controller. To solve the problem of unmeasured states, the impulsive phenomenon of singular systems, and the PD scheme’s reasonableness, a novel observer-based fuzzy controller is developed. By using the Lyapunov theory and projection lemma, the stability criteria are built in terms of linear matrix inequalities (LMI). Moreover, the gains of fuzzy controller and fuzzy observer can be calculated synchronously by using convex optimization algorithms. Finally, a biological economic system is provided to verify the effectiveness of the proposed fuzzy control method.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Wen-Jer Chang ◽  
Bo-Jyun Huang ◽  
Po-Hsun Chen

For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.


Author(s):  
Gao Ming-Zhou ◽  
Chen Xin-Yi ◽  
Han Rong ◽  
Yao Jian-Yong

To suppress airfoil flutter, a lot of control methods have been proposed, such as classical control methods and optimal control methods. However, these methods did not consider the influence of actuator faults and control delay. This paper proposes a new finite-time H∞ adaptive fault-tolerant flutter controller by radial basis function neural network technology and adaptive fault-tolerant control method, taking into account actuator faults, control delay, modeling uncertainties, and external disturbances. The theoretic section of this paper is about airfoil flutter dynamic modeling and adaptive fault-tolerant controller design. Lyapunov function and linear matrix inequality are employed to prove the stability of the proposed control method of this paper. The numeral simulation section further proves the effectiveness and robustness of the proposed control algorithm of this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jumei Wei ◽  
Rui Ma

This paper investigates the problem of the stability and stabilization of continuous-time Markovian jump singular systems with partial information on transition probabilities. A new stability criterion which is necessary and sufficient is obtained for these systems. Furthermore, sufficient conditions for the state feedback controller design are derived in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yifu Feng ◽  
Zhi-Min Li ◽  
Xiao-Heng Chang

This paper investigates the problem of H∞ filtering for class discrete-time Lipschitz nonlinear singular systems with measurement quantization. Assume that the system measurement output is quantized by a static, memoryless, and logarithmic quantizer before it is transmitted to the filter, while the quantizer errors can be treated as sector-bound uncertainties. The attention of this paper is focused on the design of a nonlinear quantized H∞ filter to mitigate quantization effects and ensure that the filtering error system is admissible (asymptotically stable, regular, and causal), while having a unique solution with a prescribed H∞ noise attenuation level. By introducing some slack variables and using the Lyapunov stability theory, some sufficient conditions for the existence of the nonlinear quantized H∞ filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is presented to demonstrate the effectiveness of the proposed quantized filter design method.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Linna Zhou ◽  
Qianjin Wang ◽  
Xiaoping Ma ◽  
Chunyu Yang

This paper investigates the problem of fuzzy controller design for nonaffine-in-control singularly perturbed switched systems (NCSPSSs). First, the NCSPSS is approximated by Takagi-Sugeno (T-S) models which include not only state but also control variables in the premise part of the rules. Then, a dynamic state feedback controller design method is proposed in terms of linear matrix inequalities. Under the controller, stability bound estimation problem of the closed-loop system is solved. Finally, an example is given to show the feasibility and effectiveness of the obtained methods.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2266 ◽  
Author(s):  
Fei Zhao ◽  
Jinsha Yuan ◽  
Ning Wang ◽  
Zhang Zhang ◽  
Helong Wen

The problem of secure load frequency control of smart grids is investigated in this paper. The networked data transmission within the smart grid is corrupted by stochastic deception attacks. First, a unified Load frequency control model is constructed to account for both network-induced effects and deception attacks. Second, with the Lyapunov functional method, a piecewise delay analysis is conducted to study the stability of the established model, which is of less conservativeness. Third, based on the stability analysis, a controller design method is provided in terms of linear matrix inequalities. Finally, a case study is carried out to demonstrate the derived results.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Li Li ◽  
Fucheng Liao

A preview controller design method for discrete-time systems based on LMI is proposed. First, we use the difference between a system state and its steady-state value, instead of the usual difference between system states, to transform the tracking problem into a regulator problem. Then, based on the Lyapunov stability theory and linear matrix inequality (LMI) approach, the preview controller ensuring asymptotic stability of the closed-loop system for the derived augmented error system is found. And an extended functional observer is designed in this paper which can achieve disturbance attenuation in the estimation process; as a result, the state of the system can be reconstructed rapidly and accurately. The controller gain matrix is obtained by solving an LMI problem. By incorporating the controller obtained into the original system, we obtain the preview controller of the system under consideration. To make sure that the output tracks the reference signal without steady-state error, an integrator is introduced. The numerical simulation example also illustrates the effectiveness of the results in the paper.


Author(s):  
Daren Yu ◽  
Xiaofeng Liu ◽  
Wen Bao ◽  
Zhiqiang Xu

The multiobjective regulating and protecting control method presented here will enable improved control of multiloop switching control of an aeroengine. The approach is based on switching control theory, the switching performance objectives and the strategy are given, and a family of H∞ proportional-integral-derivative controllers was designed by using linear matrix inequality optimization algorithm. The simulation shows that using the switching control design method not only can improve the dynamic performance of the engine control system but also can guarantee the stability in some peculiar occasions.


2011 ◽  
Vol 383-390 ◽  
pp. 32-37
Author(s):  
Li Ming Liang ◽  
Fa Lu Weng ◽  
Yuan Chun Ding

In this paper the problem of robust stability and stabilization of a class of uncertain singular Systems with uncertainties in both the derivative and state matrices is studied. By using a parameter dependent Lyapunov function, we derive the linear matrix inequalities (LMIs) based sufficient conditions for the stability and stabilization of the system. By solving these LMIs, the robust controller is derived. Finally, the numerical example is given to show the effectiveness of the proposed theorems.


Sign in / Sign up

Export Citation Format

Share Document