scholarly journals A Comparative Numerical Analysis on the Effect of Welding Consumables on the Ballistic Resistance of SMAW Joints of Armor Steel

2021 ◽  
Vol 11 (8) ◽  
pp. 3629
Author(s):  
Ambuj Saxena ◽  
Shashi Prakash Dwivedi ◽  
Shubham Sharma ◽  
Vishal Shankar Srivastava ◽  
Gursharan Singh ◽  
...  

In the present investigation, a comparative study of ballistic impact behavior of Armox 500T (base metal) and its weldments prepared by low hydrogen ferrite (weldment-1) and austenitic stainless steel (weldment-2) consumables against 7.62 AP bullet has been performed with the help of finite element analysis code Abaqus 2017. Further, the result is validated with the experimental results. The experiment has been performed on the base metal, weldment-1, and weldment-2 against 7.62 AP bullet. Further, a two-dimensional explicit model has been developed for given purpose to simulate the bullet penetration at such high strain rate (103 s−1). Both bullet and plate are considered as deformable. Experimental results revealed that the depth of penetration in the base metal, weldment-1, and weldment-2 is 10.93, 13.65, and 15.20 mm respectively. Further computational results revealed that the depth of penetration of base metal, weldment-1, and weldment-2 is 10.11, 12.87, and 14.60 mm, respectively. Furthermore, weldment-1 shows more resistance against 7.62 AP bullet than weldment-2 in experimentation as well as FEA results. The percentage difference between experimental and FEA results are less than 10% which shows the prediction capability of FEA models. A feasibility analysis has been presented for using the welding consumables to weld the Armox 500T plate. Finally, in terms of ballistic resistance, the low hydrogen ferrite consumables are more appropriate than austenitic stainless-steel electrodes.

2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


2017 ◽  
Vol 728 ◽  
pp. 60-65
Author(s):  
Thanaporn Thonondaeng ◽  
Ghit Laungsopapun ◽  
Kittichai Fakpan ◽  
Krittee Eidhed

Single pass overlay welding of the ERNiCu-7 filler metal on the commercial pure titanium grade 2 and the 304 stainless steel using the gas tungsten arc welding (GTAW) process was studied. The ERNiCu-7 filler metal was overlay welded on the base metals with varying welding currents; it was 30A, 40A and 50A for the CP-Ti base metal and 50A, 60A and 70A for the 304SS base metal. The experimental results showed that the overlay CP-Ti welded-specimen, increasing of welding current increased bead width and decreased depth of penetration of weldment. While for the 304SS welded-specimen, increasing of welding current increased both bead width and depth of penetration. Suitable heat inputs to achieve good geometry of weldment for overlay welding were 348J/mm for CP-Ti welded-specimen and 558J/mm for 304SS welded-specimen.


Author(s):  
R Rajasekaran ◽  
AK Lakshminarayanan

The stress corrosion cracking (SCC) resistance of the laser beam welded (LBW) AISI 316LN austenitic stainless steel (SS) was assessed and compared to the base metal (BM). The weld joint was produced using a 2.5 kW laser power source at 1500 mm/min welding speed. Microstructural characterization of the base metal and weld joint were done by the following techniques: (i) Optical Microscopy (OM), (ii) Scanning Electron Microscopy (SEM) and (iii) Transmission Electron Microscopy (TEM). The primary mechanical properties such as strength, toughness and hardness of the welded joint were evaluated and compared with the base metal. Stress Corrosion Cracking (SCC) assessment was done in boiling 45 wt% MgCl2 solution at constant load condition as per American Society for Testing and Materials (ASTM) standard G36-94. From the SCC experiment data, steady-state elongation rate ([Formula: see text]), transition time ([Formula: see text]) and time to failure ([Formula: see text]) were found and generalized equations to predict the time to failure of the base metal and LBW joint were successfully derived. The passive film rupture mechanism majorly influenced the SCC failure for 316LN and welded joint. The formation of the discontinuous δ-ferrite network, residual stress and nitrogen pore nucleation at the fusion zone of the LBW joint deteriorated the SCC resistance. The metallographic and fractographic studies revealed brittle transgranular SCC failure of the base metal as well as the LBW joint in all the stress conditions.


Author(s):  
Xavier Ficquet ◽  
Vincent Robin ◽  
Ed Kingston ◽  
Stéphan Courtin ◽  
Miguel Yescas

This paper presents results from a programme of through thickness residual stress measurements and finite element analysis (FEA) modelling carried out on a temper bead mock-up. Emphasis is placed on results comparison rather than the measurement technique and procedure, which is well documented in the accompanying references. Temper bead welding processes have been developed to simulate the tempering effect of post-weld heat treatment and are used to repair reactor pressure vessel components to alleviate the need for further heat-treatment. The Temper Bead Mock-up comprised of a rectangular block with dimension 960mm × 189mm × 124mm was manufactured from a ferritic steel forged block with an austenitic stainless steel buttering and a nickel alloy temper bead cladding. The temper bead and buttering surfaces were machined after welding. Biaxial residual stresses were measured at a number of locations using the standard Deep-Hole Drilling (DHD) and Incremental DHD (iDHD) techniques on the Temper Bead Mock-up and compared with FEA modelling results. An excellent correlation existed between the iDHD and the modelled results, and highlighted the need for the iDHD technique in order to account for plastic relaxation during the measurement process. Maximum tensile residual stresses through the thickness were observed near the austenitic stainless steel surface at 298MPa. High compressive stresses were observed within the ferritic base plate beneath the bimetallic interface between austenitic and ferritic steels with peak stresses of −377MPa in the longitudinal direction.


2013 ◽  
Vol 658 ◽  
pp. 350-353
Author(s):  
Tae Soo Kim ◽  
Min Seung Kim ◽  
Sung Woo Shin

Since stainless steel has significant characteristics such as its superior corrosion resistance, durability, aesthetic appeal etc., it has been utilized as structural members in buildings. Recently, ultimate behaviors and curling influence in austenitic stainless steel single shear bolted connections with thin-walled plane plates have been investigated by T.S. Kim. In this paper, finite element analysis (FEA) has been conducted based on the existing test results of angle bolted connections in fabricated with austenitic stainless steel. The validation of the numerical analysis prediction was verified through the comparison of test results for fracture mode, ultimate strength and curling occurrence. Curling (out-of- plane deformation) also observed in the connections with a long end distance. The curling caused the ultimate strength reduction and the ultimate strength reduction ratios (varied from 12% to 25%) caused by curling have been estimated quantitatively through the comparison of FEA results of FE models with free edge and restrained curling.


Sign in / Sign up

Export Citation Format

Share Document