scholarly journals Dynamic Identification of Tensile Force in Tie-Rods by Interferometric Radar Measurements

2021 ◽  
Vol 11 (8) ◽  
pp. 3687
Author(s):  
Domenico Camassa ◽  
Anna Castellano ◽  
Aguinaldo Fraddosio ◽  
Giuseppe Miglionico ◽  
Mario Daniele Piccioni

An experimental investigation on the accuracy of dynamically determined tensile force in tie-rods by applying the interferometric radar technique was performed. Tie-rods were used in historical masonry constructions for absorbing thrusts of arches and vaults, and the radar interferometry may represent a fast and easy non-destructive approach for the tensile force identification in the occasion of structural assessments. Laboratory dynamic tests on a cable under a known tensile force show that, provided that a suitable dynamic identification model is used, tensile force evaluations made stating from interferometric radar measurements were characterized by a very good accuracy (mean error in the tensile force estimation less than 2%), comparable with evaluations made starting from accelerometric measurements. In particular, the dynamic identification model considered is a modified version of a model proposed in the literature. The influence on the accuracy in the determination of the tensile force of some features of the experimental setup, like, e.g., the employ of corner reflectors, is discussed.

2014 ◽  
Vol 923 ◽  
pp. 81-84 ◽  
Author(s):  
Jiří Witzany ◽  
Tomáš Čejka ◽  
Radek Zigler

The experimental, in-situ and laboratory research has manifested a relatively large variance of the physical and mechanical characteristics of historical masonry found e.g. within a masonry wall, a massive masonry pillar etc. Artical presents the evaluation of the experimentally determined physical and mechanical characteristics of masonry members and the binder obtained by sampling specimens and by non-destructive measurements relies on the application of appropriate probabilistic methods.


1983 ◽  
Vol 27 ◽  
Author(s):  
L. Salamanca-Riba ◽  
B.S. Elman ◽  
M.S. Dresselhaus ◽  
T. Venkatesan

ABSTRACTRutherford backscattering spectrometry (RBS) is used to characterize the stoichiometry of graphite intercalation compounds (GIC). Specific application is made to several stages of different donor and acceptor compounds and to commensurate and incommensurate intercalants. A deviation from the theoretical stoichiometry is measured for most of the compounds using this non-destructive method. Within experimental error, the RBS results agree with those obtained from analysis of the (00ℓ) x-ray diffractograms and weight uptake measurements on the same samples.


Author(s):  
Prong Kongsubto ◽  
Sirarat Kongwudthiti

Abstract Organic solderability preservatives (OSPs) pad is one of the pad finishing technologies where Cu pad is coated with a thin film of an organic material to protect Cu from oxidation during storage and many processes in IC manufacturing. Thickness of OSP film is a critical factor that we have to consider and control in order to achieve desirable joint strength. Until now, no non-destructive technique has been proposed to measure OSP thickness on substrate. This paper reports about the development of EDS technique for estimating OSP thickness, starting with determination of the EDS parameter followed by establishing the correlation between C/Cu ratio and OSP thickness and, finally, evaluating the accuracy of the EDS technique for OSP thickness measurement. EDS quantitative analysis was proved that it can be utilized for OSP thickness estimation.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


2001 ◽  
Vol 671 ◽  
Author(s):  
Michael Gostein ◽  
Paul Lefevre ◽  
Alex A. Maznev ◽  
Michael Joffe

ABSTRACTWe discuss applications of optoacoustic film thickness metrology for characterization of copper chemical-mechanical polishing (CMP). We highlight areas where the use of optoacoustics for CMP characterization provides data complementary to that obtained by other techniques because of its ability to directly measure film thickness with high spatial resolution in a rapid, non-destructive manner. Examples considered include determination of planarization length, measurement of film thickness at intermediate stages of polish, and measurement of arrays of metal lines.


Sign in / Sign up

Export Citation Format

Share Document