scholarly journals Global Water Crisis: Concept of a New Interactive Shower Panel Based on IoT and Cloud Computing for Rational Water Consumption

2021 ◽  
Vol 11 (9) ◽  
pp. 4081
Author(s):  
Adrian Czajkowski ◽  
Leszek Remiorz ◽  
Sebastian Pawlak ◽  
Eryk Remiorz ◽  
Jakub Szyguła ◽  
...  

The present paper describes the problem and effects of water scarcity and the possibility of rational use of this resource in the idea of a Circular Economy (CE) and sustainable development. Rational water management requires innovation, due to the growing demand for this raw material. It seems that water is widely available, e.g., in Poland, there is no problem with drought. Unfortunately, Polish water resources are shrinking and modern solutions, as well as the construction of new and modernisation of old infrastructure, are some of the few solutions that can protect against a shortage of potable water. Water is also an essential resource for economic development. It is used in every sector of the economy. Limited water resources lead to an inevitable energy transformation because, in its present state, the Polish energy industry consumes huge amounts of water. Due to the above statements, the authors propose a solution in the form of an interactive shower panel that contributes to more rational water management (e.g., in households or hotels) based on the latest technological achievements. This device enables the creation of water consumption statistics based on accurate liquid flow measurements and the transfer of data to the user’s mobile device. This innovation aims to make the user aware of the amount of water used, which in turn can contribute to lower water consumption.

2001 ◽  
Vol 43 (10) ◽  
pp. 67-74 ◽  
Author(s):  
P. Xu ◽  
F. Valette ◽  
F. Brissaud ◽  
A. Fazio ◽  
V. Lazarova

An integrated technical-economic model is used to address water management issues in the French island of Noirmoutier. The model simulates potable water production and supply, potable and non potable water demand and consumption, wastewater collection, treatment and disposal, water storage, transportation and reuse. A variety of water management scenarios is assessed through technical, economic and environmental evaluation. The scenarios include wastewater reclamation and reuse for agricultural and landscape irrigation as well as domestic non potable application, desalination of seawater and brackish groundwater for potable water supply. The study shows that, in Noirmoutier, wastewater reclamation and reuse for crop irrigation is the most cost-effective solution to the lack of water resources and the protection of sensitive environment. Some water management projects which are regarded as having less economic benefit in the short-term may become competitive in the future, as a result of tightened environmental policy, changed public attitudes and advanced water treatment technologies. The model provides an appropriate tool for water resources planning and management.


2018 ◽  
Vol 74 ◽  
pp. 06004
Author(s):  
Setia Devi Kurniasih ◽  
Tri Edhi Budhi Soesilo ◽  
Roekmijati W. Soemantojo

This study investigated waste minimization opportunities and implementation strategy at the fish processing industry. This study used quantitative approach with field observation and open list of questionnare method to identify resources saving. The result of this study showed that fish processing industry (Company XYZ) was not implemented a waste minimization approach. The water resources saving reached 89.76 m3 or 27.2% from fresh water per a week of the production process and water consumption saving for washing process reached 30%. The utilization of solid waste can generate economic potential reached 26% of raw material, while liquid waste reached 51% of water consumption. The waste minimization approach hopefully would assist interested the company and bring both increase environmental performance and competitive advantage in the whole fish processing industry, especially in Indonesia.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 441-448 ◽  
Author(s):  
J. Lahnsteiner ◽  
G. Lempert

For decades, the city of Windhoek in Namibia succeeded in stretching their limited potable water resources through strict water management, latterly including wastewater reclamation and direct potable reuse. An integrated approach was followed and proper policies were put in place. This was followed up with appropriate legislation, education, policing and technical and financial measures with the result that extreme water shortages were overcome even in times of severe droughts.


Author(s):  

Water consumption into the Arctic zone of Russia and at the catchments of the Arctic seas of Russia is relatively small. In 2006-2017 on the watershed of the Arctic seas an average of 21.3 km3 of natural waters were being taken annually, and within the Arctic zone of Russia was 2.6 km3/year, or, respectively, of 28.8 and 3.5% of the national volume. Whereas these regions occupy about 71% and 18% of the country’s area. This is an objective consequence of the very small population and economic development of these territories. The volume of discharge of salvaged waters on the catchments of the Arctic seas is comparable to the volume of water intake and is equal to 15.2 km3/year, or 71%. The difference between water withdrawal and discharges of salvaged water within the Arctic zone of Russia is even less. Therefore, there is no statistically significant impact of water consumption on the water resources of the Arctic rivers, as well as shortage of water resources in the region. In addition, current water consumption is characterized, firstly, by its absence in many territories. Secondly, it is 30-50% less than it was in the 1980s. Thirdly, the water consumption value, on the contrary, has increased in the districts of development of oil and gas production. Fourthly, the water supply of industrial enterprises, heat power and public utilities exclusively dominates in the sectoral structure of water consumption. Fifthly, river waters make up main part of the water use. The study also had several important additional results. The first result is the creation of a unique map illustrating the values and features of spatial changes in water management characteristics in the Arctic zone of Russia. The second is conclusions regarding the reliability and completeness of data of various origin, including from alternative sources of information. The third is the successful implementation of the water management review approach with a transition from a macro-scale level to specific areas, localities and water consumers.


2014 ◽  
Vol 34 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Ana C. Barana ◽  
Viviani M. B. Botelho ◽  
Giovana K. Wiecheteck ◽  
Maria M. R. Doll ◽  
Deise R. S. Simões

Agroindustries are major consumers of water. However, to adapt to environmental trends and be competitive in the market, they have sought rational use of water through water management in their activities. Cleaner Production can result in economic, environmental and social benefits, and in actions that promote reduction in water consumption. This case study was conducted in a slaughterhouse and poultry cold storage processing plant and aimed to identify points of excessive water consumption, and to propose alternatives for managing water resources by reducing consumption. Consumption data are presented in relation to the processing stages with alternatives proposed for the rational use of water, such as closure of mains water during shift changes. Following the implementation of recommendations, a reduction in water consumption of approximately 11,137 m³ per month was obtained, which equates to a savings of US$ 99,672 per year. From this study, it was concluded that the company under review could develop various improvement actions and make an important contribution to the preservation of water resources in the region where it operates.


Author(s):  
Maite M. Aldaya ◽  
M. Ramón Llamas ◽  
Arjen Y. Hoekstra

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. The water footprint concept broadens the scope of traditional national and corporate water accounting as it has been previously known. It highlights the ways in which water consuming and polluting activities relate to the structure of the global economy, opening a window of opportunity to increase transparency and improve water management along whole-production and supply chains. This concept adds a new dimension to integrated water resources management in a globalized world. The water footprint is a relatively recent indicator. Created in 2002, it aims to quantify the effect of consumption and trade on the use of water resources. Specifically, the water footprint is an indicator of freshwater use that considers both direct and indirect water use of a consumer or producer. For instance, the water footprint of a product refers to the volume of freshwater used to produce the product, tracing the origin of raw material and ingredients along their respective supply chains. This novel indirect component of water use in supply chains is, in many cases, the greatest share of water use, for example, in the food and beverage sector and the apparel industry. Water footprint assessment shows the full water balance, with water consumption and pollution components specified geographically and temporally and with water consumption specified by type of source (e.g., rainwater, groundwater, or surface water). It introduces three components: 1. The blue water footprint refers to the consumption of blue water resources (i.e., surface and groundwater including natural freshwater lakes, manmade reservoirs, rivers, and aquifers) along the supply chain of a product, versus the traditional and restricted water withdrawal measure. 2. The green water footprint refers to consumption through transpiration or evaporation of green water resources (i.e., soilwater originating from rainwater). Green water maintains natural vegetation (e.g., forests, meadows, scrubland, tundra) and rain-fed agriculture, yet plays an important role in most irrigated agriculture as well. Importantly, this kind of water is not quantified in most traditional agricultural water use analyses. 3. The grey water footprint refers to pollution and is defined as the volume of freshwater that is required to assimilate the load of pollutants given natural concentrations for naturally occurring substances and existing ambient water-quality standards. The water footprint concept has been incorporated into public policies and international standards. In 2011, the Water Footprint Network adopted the Water Footprint Assessment Manual, which provides a standardized method and guidelines. In 2014, the International Organization for Standardization adopted a life cycle-based ISO 14046 standard for the water footprint; it offers guidelines to integrate water footprint analysis in life-cycle assessment for products. In practice, water footprint assessment generally results in increased awareness of critical elements in a supply chain, such as hotspots that deserve most attention, and what can be done to improve water management in those hotspots. Water footprint assessment, including the estimation of virtual water trade, applied in different countries and contexts, is producing new data and bringing larger perspectives that, in many cases, lead to a better understanding of the drivers behind water scarcity.


The lack of fresh water is becoming the one of the most threatening challenges to mankind. It is pertinent to solve the problem of finding ways to overcome the impending danger. The features of the allocation of water resources and their use in the modern world are considered. Based on correlation analysis it is shown a relatively high correlation between the population and water resources, on the one hand, and volumes of water consumption, on the other, in the context of different world parts, and the absence of such correlation in the context of individual countries of the world. It describes the state and dynamics of world industrial, communal and domestic water consumption. There are calculations on the forecast of the state of water resources, taking into account the increasing volume of their exploitation, irrevocable water losses and pollution of water sources. It shows that the dynamics of their use leads to a threatening water management imbalance on a global scale. The measures taken toupgrade the water supply systems for population and economy will not lead to an improvement of the situation. It is necessary to find ways of solving the problem on the international level, including organizational, political, economic, and technical aspects. One of such ways is to improve the water consumption territorial structure on a planetary scale based on the strengthening importance of the water factor in the organization of industrial and, in particular, agricultural production. Conclusions: the water factor should become decisive in determining the economic specialization of countries within the framework of the international division of labor. The second way includes the extension of the practice of inter-basin redistribution of river flow with the creation of interregional and international zones of unified water consumption with the appropriate water management complexes.


2020 ◽  
pp. 1-19
Author(s):  
Cinalberto Bertozzi ◽  
Fabio Paglione

The Burana Land-Reclamation Board is an interregional water board operating in three regions and five provinces. The Burana Land-Reclamation Board operates over a land area of about 250,000 hectares between the Rivers Secchia, Panaro and Samoggia, which forms the drainage basin of the River Panaroand part of the Burana-Po di Volano, from the Tuscan-Emilian Apennines to the River Po. Its main tasks are the conservation and safeguarding of the territory, with particular attention to water resources and how they are used, ensuring rainwater drainage from urban centres, avoiding flooding but ensuringwater supply for crop irrigation in the summer to combat drought. Since the last century the Burana Land-Reclamation Board has been using innovative techniques in the planning of water management schemes designed to achieve the above aims, improving the management of water resources while keeping a constant eye on protection of the environment.


Author(s):  
V.K. Khilchevskyi ◽  

In contrast to the hydrological and hydrochemical zoning, hydrographic and water management zoning of Ukraine (2016) was created on a basin basis, taking into account the boundaries of river basins, and not physiographic zoning. The main function of hydrographic and water management zoning is water management. Primary is hydrographic zoning, and water management - based on it. The description of modern hydrographic zoning of the territory of Ukraine, approved in 2016 by the Verkhovna Rada of Ukraine and included in the Water Code of Ukraine is given. Hydrographic zoning is carried out for the development and implementation of river basin management plans. On the territory of Ukraine nine areas of river basins are allocated: Dnipro; Dnister; Danube; Southern Bug; Don; Vistula; rivers of the Crimea; rivers of the Black Sea coast; rivers of the Azov Sea coast 13 sub-basins are allocated in four river basins district. The water management zoning is described - the division of hydrographic units into water management areas, which is carried out for the development of water management balances. In the regions of the river basins in the territory of Ukraine allocated 132 water management areas, 59 of which are located in the Dnipro basin. About 9,000 bodies of surface water allocated for monitoring in Ukraine. Approved zoning is the implementation of the provisions of the EU Water Framework Directive 2000/60 / EC in the management of water resources in Ukraine. Modern hydrographic and water management zoning of the territory of Ukraine approximates the management of water resources of the state to European requirements.


2020 ◽  
Vol 38 (3) ◽  
Author(s):  
Marium Sara Minhas Bandeali

Water governance and management are important challenges for the River Indus Basin in Pakistan. Water governance refers to social, political and economic factors that influence water management. The water scarcity and water security are a major concern for the state to control its water resources. The study aims to give Sindh water policy by exploring the challenges to Indus Basin in managing water resources and to identify opportunities Indus Basin can look to improve water management. Interviews were conducted from water experts and analysts having 5 years’ experience or more in the water sector of Pakistan through a semi-structured self-developed questionnaire using purposive sampling technique and transcripts were analyzed using thematic content analysis. The findings show that increasing population, climatic change and rising demand of water are major challenges Indus is facing and Indus with time is getting water-scarce therefore need strong institutions, civil society and legislatures to ensure equitable distribution of water and maintain the ecosystem. The study emphasizes that water governance and management are necessary for sustainable use of water. Pakistan, the water stress country needs to address ‘governance’ at a wider scale to solve problems in the Indus Basin for the livelihood of people. The research will benefit the state, water experts, institutions as well as civil society to promote efficient use of water in Indus Basin.


Sign in / Sign up

Export Citation Format

Share Document