scholarly journals Influences of the Water Cut of Pumping Oil and the Mineralization of the Associated Water on the Rate of Sludging

2021 ◽  
Vol 11 (15) ◽  
pp. 6678
Author(s):  
Kirill Vyatkin ◽  
Victor Mordvinov ◽  
Pavel Ilushin ◽  
Anton Kozlov

The problem of the formation of organic deposits on the inside surfaces of borehole equipment and oilfield pipelines, which is urgent for all active oil fields, was considered in the study. The formation of these deposits leads to decreased lifespans for oilfield equipment and accidents involving oil pipelines and wells. The aim of our work was to estimate the dependencies of the organic deposition’s formation-rate factor on the water cut of the investigated water–oil emulsion and the mineralization of the water phase. Examination via generation of asphaltene–resin–paraffin deposits on the surfaces of cold rods was carried out with a “Cold Finger” CF-4 unit. Coefficients of specific oil sludging, fluid sludging and rate sludging have been determined. It has been defined that in the definite oilfields, the rate of sludging does not increase as the water content in the emulsion increases. As water-phase mineralization increases, this value remains practically constant.

Author(s):  
Abed Saad ◽  
Nour Abdurahman ◽  
Rosli Mohd Yunus

: In this study, the Sany-glass test was used to evaluate the performance of a new surfactant prepared from corn oil as a demulsifier for crude oil emulsions. Central composite design (CCD), based on the response surface methodology (RSM), was used to investigate the effect of four variables, including demulsifier dosage, water content, temperature, and pH, on the efficiency of water removal from the emulsion. As well, analysis of variance was applied to examine the precision of the CCD mathematical model. The results indicate that demulsifier dose and emulsion pH are two significant parameters determining demulsification. The maximum separation efficiency of 96% was attained at an alkaline pH and with 3500 ppm demulsifier. According to the RSM analysis, the optimal values for the input variables are 40% water content, 3500 ppm demulsifier, 60 °C, and pH 8.


2016 ◽  
pp. 71-74
Author(s):  
E. F. Zakharova ◽  
E. V. Levanova ◽  
G. N. Farkhutdinov

The efficiency of different physical and chemical technologies used in various areas and Romashkinskoye New-Elkhovskoye oil fields was researched. The result was a conclusion that at high water-cut objects, restriction of movement of water in highly permeable leached zones of a productive layer is one of the main conditions for increasing the efficiency of not only flooding, but also the use of physical and chemical methods based on improving of oil extraction factor.


2020 ◽  
Vol 10 (15) ◽  
pp. 5052 ◽  
Author(s):  
Sayani Jai Krishna Sahith ◽  
Srinivasa Rao Pedapati ◽  
Bhajan Lal

In this work, a gas hydrate formation and dissociation study was performed on two multiphase pipeline systems containing gasoline, CO2, water, and crude oil, CO2, water, in the pressure range of 2.5–3.5 MPa with fixed water cut as 15% using gas hydrate rocking cell equipment. The system has 10, 15 and 20 wt.% concentrations of gasoline and crude oil, respectively. From the obtained hydrate-liquid-vapor-equilibrium (HLVE) data, the phase diagrams for the system are constructed and analyzed to represent the phase behavior in the multiphase pipelines. Similarly, induction time and rate of gas hydrate formation studies were performed for gasoline, CO2, and water, and crude oil, CO2, water system. From the evaluation of phase behavior based on the HLVE curve, the multiphase system with gasoline exhibits an inhibition in gas hydrates formation, as the HLVE curve shifts towards the lower temperature and higher-pressure region. The multiphase system containing the crude oil system shows a promotion of gas hydrates formation, as the HLVE curve shifted towards the higher temperature and lower pressure. Similarly, the kinetics of hydrate formation of gas hydrates in the gasoline system is slow. At the same time, crude oil has a rapid gas hydrate formation rate.


2016 ◽  
Vol 30 (5) ◽  
pp. 3929-3933 ◽  
Author(s):  
Yan Song ◽  
Hong L. Zhan ◽  
Kun Zhao ◽  
Xin Y. Miao ◽  
Zhi Q. Lu ◽  
...  

Author(s):  
Lai-Bin Zhang ◽  
Zhao-Hui Wang ◽  
Wei Liang

Oil and gas transportation pipelines are the key equipment in petroleum and chemical industry. At present, with the increase of transportation task in oil fields, real-time leak detection system becomes a demand that petroleum companies need to safeguard routines. At the heart of the leakage monitoring and detection procedures are the report of leakage event timely and of leakage point precisely. This paper presents a more realistic approach for using rarefaction-pressure wave technique in oil pipelines, which aims to two targets, one is the improvement of remote and intelligent degree, and the other is the improvement of the leakage location ability. This paper introduces a new scheme to meet the requirements of real time and high data transferring necessary for remote monitoring and leak detection methods for pipelines. The scheme is based on SCADA framework for remote pipeline leakage diagnosis, in which the Dynamic Data Exchange technology is utilized to construct the data-acquiring component to acquire the real-time information that could perform remote test and analysis. It also introduces a basic concept and structure of the remote leak detection system. Primarily, an embedded leak-detection package is designed to exchange the diagnostic information with the RTU data package of Modbus protocol, and then via fiber network, the SCADA-based remote monitoring and leak detection system is realized. Existing data acquisition apparatus applied in oil fields and city underground water pipeline is used, without changing the structure of pipeline supervisory system. This paper introduces the method of constructing DDE-based hot links between servers and client terminals, using Borland C++ Builder 6.0 development environment, and also explains the universality and friendliness of the method. It can easily access similar Windows’ applications simply by modifying Service names, Topic options and data Items. System feasibility was tested using negative-pressure data from oil-fields. Additionally, the applied results show that the whole running status of pipeline can be monitored effectively, and a higher automation grade and an excellent leak location precision of the system can be obtained.


2013 ◽  
Vol 401-403 ◽  
pp. 404-408
Author(s):  
Wei Lin Cui ◽  
Shi Xu Li ◽  
Ling Jian Song ◽  
Yong Sheng Li

Abstract: During the transportation of the oil which is replaced from stratum by return water with demulsifier, the rheology of the water cut oil must have been affected. In order to study the influence rule of emulsion which contains hydrophilic demulsifier, we don this experiment which tests the different demulsifier using HAAKE Viscotester 550. The testing result showed that for crude oil emulsion, the effects of the factors on the rheological index and demulsifier evaluation index into corresponding relation, this provides the rheological field development significance; Demulsifier could move forward the emulsification diversion point, and the viscosity of the emulsion decreased effectively with different moisture contents. Different structure types of demulsifier have the different influence on viscosity. Finally, we conclude the influence rule of emulsion which provides the daterbase for crude oil heating airtight gathering and transportation technology .


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Pengyu Wang ◽  
Wei Wang ◽  
Jing Gong ◽  
Yuanxin Zhou ◽  
Wei Yang

In the study of the foundation of the oil / water wax deposition experiment, the emulsification characteristics of crude oil emulsion with high wax content have gradually become the hot research area. In the current research of emulsification characteristics of oil/water emulsion, the attention has been focused on the study of the effects of water cut, stirring speed, particle size distribution on the viscosity of waxy crude oil emulsion in the experiment, in which heavy oil and simulated oil are adopted as the working fluids. In this study, the emulsion with different water cut and stirred by different speed was prepared under three different temperature conditions, the temperature above the wax appearance temperature (WAT), near the WAT, and below the WAT. The polarization microscope and rotary viscometer were applied to measure the effects of the particle size of the dispersed phase and waxy crystal distribution on the oil/water emulsion viscosity. The results suggest that preparing the temperature for crude oil emulsion with high wax content has an important influence on the emulsion microstructure. This study lays the foundation for further study of oil/water two phase dynamic wax deposition experiments.


2019 ◽  
Vol 1 (2) ◽  
pp. 25-31
Author(s):  
Oleg Kolesnikov ◽  
Valery Khoroshilov

The article discusses the possibility of visualization of the production of geodetic works based on the submission of the required data in the "empty" shell of the information system to improve the quality of performance of works on object-based visual perception of information.


1995 ◽  
Vol 1995 (1) ◽  
pp. 435-422 ◽  
Author(s):  
Tsutomu Tsukihara

ABSTRACT Crude oil spilled in the sea is mixed with the sea water by the wind and waves resulting in increases in its water content and viscosity as time passes. We have constructed a small, transfer type circulating water channel of an elliptical cuit-track form. Using an attached circulating unit, together with a war tunnel, artificial waves are generated to enable simulation corresponding to the natural circumstances in the sea. The experiment disclosed the following results.Drastic changes in the properties (water content and viscosity) of the oil depend on the power of waves.Contrasting processes are observed between heavy and light crude oils during weathering.Heavy crude oils form a massive water-in-oil emulsion (mousse) with increases in both water content and viscosity.Light crude oils behave differently at summer sea temperatures,


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 470
Author(s):  
Josipa Hranić ◽  
Sara Raos ◽  
Eric Leoutre ◽  
Ivan Rajšl

There are numerous oil fields that are approaching the end of their lifetime and that have great geothermal potential considering temperature and water cut. On the other hand, the oil industry is facing challenges due to increasingly stringent environmental regulations. An example of this is the case of France where oil extraction will be forbidden starting from the year 2035. Therefore, some oil companies are considering switching from the oil business to investing in geothermal projects conducted on existing oil wells. The proposed methodology and developed conversions present the evaluation of existing geothermal potentials for each oil field in terms of water temperature and flow rate. An additional important aspect is also the spatial distribution of existing oil wells related to the specific oil field. This paper proposes a two-stage clustering approach for grouping similar wells in terms of their temperature properties. Once grouped on a temperature basis, these clusters should be clustered once more with respect to their spatial arrangement in order to optimize the location of production facilities. The outputs regarding production quantities and economic and environmental aspects will provide insight into the optimal scenario for oil-to-water conversion. The scenarios differ in terms of produced energy and technology used. A case study has been developed where the comparison of overall fields and clustered fields is shown, together with the formed scenarios that can further determine the possible conversion of petroleum assets to a geothermal assets.


Sign in / Sign up

Export Citation Format

Share Document