scholarly journals WEATHERING EXPERIMENT ON SPILLED CRUDE OILS USING A CIRCULATING WATER CHANNEL

1995 ◽  
Vol 1995 (1) ◽  
pp. 435-422 ◽  
Author(s):  
Tsutomu Tsukihara

ABSTRACT Crude oil spilled in the sea is mixed with the sea water by the wind and waves resulting in increases in its water content and viscosity as time passes. We have constructed a small, transfer type circulating water channel of an elliptical cuit-track form. Using an attached circulating unit, together with a war tunnel, artificial waves are generated to enable simulation corresponding to the natural circumstances in the sea. The experiment disclosed the following results.Drastic changes in the properties (water content and viscosity) of the oil depend on the power of waves.Contrasting processes are observed between heavy and light crude oils during weathering.Heavy crude oils form a massive water-in-oil emulsion (mousse) with increases in both water content and viscosity.Light crude oils behave differently at summer sea temperatures,

SPE Journal ◽  
2008 ◽  
Vol 13 (03) ◽  
pp. 346-353 ◽  
Author(s):  
Jan H. Beetge ◽  
Bruce Horne

Summary Resolution of water-and-oil emulsions is critical to the oilfield industry. A wide variety of undesirable emulsions are formed during the production, handling, and processing of crude oil. Although various methods are used, dehydration of crude oils is achieved mostly by gravitational sedimentation, normally at elevated temperatures and with the addition of chemical demulsifiers. The quantitative evaluation of emulsion stability by a critical-electric-field (CEF) technique was developed to play a significant role in chemical-demulsifier research. It was found that the CEF technique is useful not only in the evaluation of water-in-oil-emulsion stability, but also in studying the mechanisms of stabilization and demulsification. A method was developed to study the mechanism of emulsion stabilization in terms of flocculation and coalescence behavior of a crude-oil emulsion. The effect of chemical demulsifiers on emulsion stability was evaluated in terms of the method developed in this study. By following this approach, it is possible to determine the relative amount of energy required for both flocculation and coalescence in the presence of a chemical demulsifier. Introduction The inevitable creation and subsequent resolution of water-in-oil emulsions during the production and processing of crude oils are of significant importance in the oilfield industry. These emulsions, which typically could be any combination of water-in-oil, oil-in-water, or complex emulsions, are diverse in their nature and stability. The majority of oilfield emulsions are resolved by the application of chemical demulsifiers in special processes under specific conditions. The stability of crude-oil emulsions is influenced by many variables; therefore, and chemical demulsifiers are developed specifically for each application to achieve optimum economic efficiency. Emulsion stability of water-in-oil emulsions encountered in the oilfield industry can be evaluated with various methods (e.g., determining droplet size and distribution, determining the amount of water resolved as a second phase, analyzing moisture of the oil phase, and more-sophisticated methods such as interfacial rheology). Sullivan et al. (2004) suggested the use of CEF as a method to provide information for stability-correlation development. Commercial separation of a dispersed aqueous phase from typical crude oil by electrostatic methods is well-known and dates to the early 20th century (Cottrell 1911; Cottrell and Speed 1911). Electrostatic dehydration technology is still being developed and refined to play an important role in challenging oilfield applications (Warren 2002). The use of CEF, as a method to evaluate water-in-oil-emulsion stability, has been developed recently by Kilpatrick et al. (2001). In their CEF technique, a sample of water-in-oil emulsion is injected between two parallel electrode plates. A direct-current voltage is applied between the two electrodes and is increased in incremental steps, with continuous monitoring of the conductivity or the amount of electrical current through the oil sample. Fig. 1 shows a simple diagram of the CEF technique. In response to the increasing applied electric field, the water droplets tend to align themselves to form agglomerated columns of droplets, which form a conducting bridge once a critical voltage (or electric field) has been reached. The strength of the electric field at which the sample shows a sharp increase in conductivity (increase in current through sample, between the two electrode plates) is recorded as the CEF. By this method, relative emulsion stability is compared quantitatively in terms of the CEF value and expressed in units of kV cm-1. In contrast to the method of Sjöblom, we have used alternating current with parallel-plate electrodes at the tip of a probe, which was submerged in the hydrocarbon medium. Comparison of crude-oil emulsions by CEF techniques is well-documented (Sullivan et al. 2004; Aske et al. 2002), but no reference to the use of CEF in chemical-demulsifier development could be found. It is the purpose of this study to develop the CEF technique for application in chemical-demulsifier research.


1987 ◽  
Vol 1987 (1) ◽  
pp. 293-296 ◽  
Author(s):  
Gerard P. Canevari

ABSTRACT Previous research has shown that crude oils contain various amounts of indigenous surface active agents that stabilize water-in-oil emulsions. It is also known that crude oils stabilize such emulsions to different extents. One aspect of the study was to investigate the relationship between the emulsion forming tendency of the various crude oils and the level of performance of a chemical dispersant on the particular crude oil. The results of the extensive laboratory test program indicated that dispersant effectiveness is a function of both dispersant type and the specific crude oil. However, there is no apparent correlation between the degree of emulsion-forming tendency of the crude oil, which is a function of the indigenous surfactant content, and effectiveness. A “clean” hydrocarbon, tetradecane (C14), was also tested in order to evaluate the absence of any indigenous surfactants on performance. It was found that tetradecane exhibited a higher level of effectiveness compared to the crude oils for each of the dispersants tested. In essence, the indigenous surfactants in the crude oil, in every instance, reduce dispersant effectiveness but to an unpredictable level. This is probably due to the fact that these agents present in crude oil promote a water-in-oil emulsion. Since the chemical dispersant is formulated to produce an oil-in-water dispersion, the interference of these crude oil surfactants is apparent. Hence, tetradecane would be an ideal test oil since the degree of dispersion of tetradecane by a particular dispersant represents the maximum dispersion effectiveness for that product. In order to establish more definitively the role of the indigenous surfactants, this surfactant phase was successfully separated from nine crude oils representative of different emulsion forming tendencies. It was found that the amount of surfactant residue extracted from the crude oil did correlate with the emulsion forming tendency of the crude oil. Finally, the above separated surfactant residue was added to tetradecane at the same concentrations as in the respective crude oil. As expected, in every instance, the surfactant residue decreased dispersant performance compared to “pure” tetradecane.


1985 ◽  
Vol 1985 (1) ◽  
pp. 441-444 ◽  
Author(s):  
Gerard P. Canevari

ABSTRACT Previously, anomalous results from various laboratory dispersant effectiveness tests were believed due to the historic difficulties of replicating field conditions in the laboratory. Some variables were reported to cause differences in dispersant performance, such as the oil viscosity—i.e., both dispersant A and dispersant B exhibited poorer performance as the oil viscosity increased. Other test results showed an opposite trend. For example, dispersant A performed more effectively than dispersant B for Murban crude oil but B was better than A for the more viscous La Rosa crude oil. It is now believed that these inconsistent results are actually due to the chemical compositions of the crude oils. Various factors influence dispersant performance and some initial research directed at determining the mechanism of water-in-oil emulsion (mousse) formation has identified naturally occurring surfactants in the various crude oils. This will provide insight as to how these indigenous agents interacted with the surfactant package in the test dispersant to affect overall performance. Variations in dispersant performance for different crude oils are thus likely to be related to the water-in-oil emulsion formation of the particular crude oil. The results of this work indicate that dispersant treatment should be evaluated during spill situations even if the crude oil physical properties, such as high viscosity, might suggest that dispersant treatment would not be effective.


Author(s):  
Abed Saad ◽  
Nour Abdurahman ◽  
Rosli Mohd Yunus

: In this study, the Sany-glass test was used to evaluate the performance of a new surfactant prepared from corn oil as a demulsifier for crude oil emulsions. Central composite design (CCD), based on the response surface methodology (RSM), was used to investigate the effect of four variables, including demulsifier dosage, water content, temperature, and pH, on the efficiency of water removal from the emulsion. As well, analysis of variance was applied to examine the precision of the CCD mathematical model. The results indicate that demulsifier dose and emulsion pH are two significant parameters determining demulsification. The maximum separation efficiency of 96% was attained at an alkaline pH and with 3500 ppm demulsifier. According to the RSM analysis, the optimal values for the input variables are 40% water content, 3500 ppm demulsifier, 60 °C, and pH 8.


2016 ◽  
Vol 148 ◽  
pp. 1149-1155 ◽  
Author(s):  
Tajnor Suriya Taju Ariffin ◽  
Effah Yahya ◽  
Hazlina Husin

2016 ◽  
Vol 9 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jiaqiang Jing ◽  
Jiatong Tan ◽  
Haili Hu ◽  
Jie Sun ◽  
Peiyu Jing

Transparent model oils are commonly used to study the flow patterns and pressure gradient of crude oil-water flow in gathering pipes. However, there are many differences between the model oil and crude oils. The existing literatures focus on the flow pattern transition and pressure gradient calculation of model oils. This paper compares two most commonly used model oils (white mineral oil and silicon oil) with Xinjiang crude oil from the perspectives of rheological properties, oil-water interfacial tensions, emulsion photomicrographs and demulsification process. It indicates that both the white mineral oil and the crude oils are pseudo plastic fluids, while silicon oil is Newtonian fluid. The viscosity-temperature relationship of white mineral oil is similar to that of the diluted crude oil, while the silicon oil presents a less viscosity gradient with the increasing temperature. The oil-water interfacial tension can be used to evaluate the oil dispersing ability in the water phase, but not to evaluate the emulsion stability. According to the Turbiscan lab and the stability test, the model oil emulsion is less stable than that of crude oil, and easier to present water separation.


2021 ◽  
Vol 287 ◽  
pp. 04003
Author(s):  
Mansoor Ul Hassan Shah ◽  
Muhammad Moniruzzaman ◽  
Mahabubur Rahman Talukder ◽  
Suzana Yusup

Chemical dispersants is one of the globally accepted remediation technique used for marine oil spill. However, the toxicity related with these dispersants confined its application in marine environment. Therefore, to overcome this problem, the employment of environmentally benign dispersants is one of the effective conceivable approach. In this study, the formulation comprised of choline based ionic liquid, choline laurate ([Cho][Lau]) and a biosurfactant, lactonic sophorolipids (LS) were used as a crude oil emulsifier. The toxicity of the newly developed formulation was evaluated to confirm their safe employment in sea water. The developed formulation worked effectively as a crude oil emulsifier and formed a stable crude oil emulsion. The toxicity study against Gram-positive and -negative bacteria depicts the “practically harmless” nature of the developed formulation. Thus, the results presented in this study showed that the new formulation can potentially replace the conventional dispersant used for marine oil spill remediation.


2018 ◽  
Vol 1 (01) ◽  
pp. 23-28
Author(s):  
Ali Asghar Pasban ◽  
Behrouz Nonahal

In crude oil analysis, the determination of salt content is one of the most important parameters especially for refining and exporting industries. In this study, extraction followed by volumetric titration and electrometric procedure are performed for determining salt content for several Iranian crude oils. Also, the effects of disturbing agents such as increasing associated water for determining salt in crude oil were investigated for both methods. The results show when water content in crude oil is less than 0.05 weight percent, both methods are equally accurate for determining salt content, but when there is an increase in associated water content in crude oil, the electrometric method followed by volumetric titration method shows more accurate results in comparison with the extraction procedure.


Sign in / Sign up

Export Citation Format

Share Document