scholarly journals Maximum Possible Cooling Rate in Ultrafast Chip Nanocalorimetry: Fundamental Limitations Due to Thermal Resistance at the Membrane/Gas Interface

2021 ◽  
Vol 11 (17) ◽  
pp. 8224
Author(s):  
Alexander A. Minakov ◽  
Christoph Schick

Ultrafast chip nanocalorimetry opens up remarkable possibilities in materials science by allowing samples to be cooled and heated at extremely high rates. Due to heat transfer limitations, controlled ultrafast cooling and heating can only be achieved for tiny samples in calorimeters with a micron-thick membrane. Even if ultrafast heating can be controlled under quasi-adiabatic conditions, ultrafast controlled cooling can be performed if the calorimetric cell is located in a heat-conducting gas. It was found that the maximum possible cooling rate increases as 1/r0 with decreasing radius r0 of the hot zone of the membrane. The possibility of increasing the maximum cooling rate with decreasing r0 was successfully implemented in many experiments. In this regard, it is interesting to answer the question: what is the maximum possible cooling rate in such experiments if r0 tends to zero? Indeed, on submicron scales, the mean free path of gas molecules lmfp becomes comparable to r0, and the temperature jump that exists at the membrane/gas interface becomes significant. Considering the limitation associated with thermal resistance at the membrane/gas interface and considering the transfer of heat through the membrane, we show that the controlled cooling rate can reach billions of K/s, up to 1010 K/s.

Author(s):  
Alexander A. Minakov ◽  
Christoph Schick

Ultrafast chip nanocalorimetry opens up remarkable possibilities in materials science by allowing samples to be cooled and heated at extremely high rates. Due to heat transfer limitations, controlled ultrafast cooling and heating can only be achieved for tiny samples in calorimeters with a micron-thick membrane. Even if ultrafast heating can be controlled under quasi-adiabatic conditions, ultrafast controlled cooling can be performed if the calorimetric cell is located in a heat-conducting gas. It was found that the maximum possible cooling rate increases as 1/r0 with decreasing radius r0 of the hot zone of the membrane. The possibility of increasing the maximum cooling rate with decreasing r0 was successfully implemented in many experiments. In this regard, it is interesting to answer the question: what is the maximum possible cooling rate in such experiments if r0 tends to zero? Indeed, on submicron scales, the mean free path of gas molecules lmfp becomes comparable to r0, and the temperature jump that exists at the membrane/gas interface becomes significant. Considering the limitation associated with thermal resistance at the membrane/gas interface and considering the transfer of heat through the membrane, we show that the controlled cooling rate can reach billions of K/s, up to 1010 K/s.


Author(s):  
K. J. Daun ◽  
S. C. Huberman

Sizing aerosolized nanoparticles through time-resolved laser-induced incandescence (TiRe-LII) requires an accurate model of the heat conduction from the laser-energized particle to the surrounding gas. Under transition regime conditions this is often done using Fuchs’ boundary-sphere method, which requires the analyst to specify the thickness of a collisionless layer surrounding the particle, representing the Knudsen layer. Traditionally the boundary layer thickness is set to the mean free path of the gas at the boundary temperature, but recently some TiRe-LII practitioners have adopted a more complex treatment that accounts for particle curvature and directional distribution of gas molecules. This paper presents a critical reassessment of this approach; while this modification is more representative of the true Knudsen layer thickness, it does not improve the accuracy of heat conduction rates estimated using Fuchs’ boundary sphere methods under conditions prevailing in most TiRe-LII experiments.


Author(s):  
Mohamad M. Joneidipour ◽  
Reza Kamali

The present study is concerned with the flow characteristics of a microchannel supersonic gas flow. The direct simulation Monte Carlo (DSMC) method is employed for predicting the density, velocity and temperature distributions. For gas flows in micro systems, the continuum hypothesis, which underpins the Navier-Stokes equations, may be inappropriate. This is because the mean free path of the gas molecules may be comparable to the characteristic length scale of the device. The Knudsen number, Kn, which is the ratio of the mean free path of the gas molecules to the characteristic length scale of the device, is a convenient measure of the degree of rarefaction of the flow. In this paper, the effect of Knudsen number on supersonic microchannel flow characteristics is studied by varying the incoming flow pressure or the microchannel height. In addition, the microchannel height and the incoming flow pressure are varied simultaneously to investigate their effects on the flow characteristics. Meanwhile, the results show that until the diffuse reflection model is used throughout the microchannel, the temperature and the Mach number in the microchannel entrance may not be equal to free-stream values and therefore a discontinuity appear in the flow field.


Author(s):  
Andreas Hütten ◽  
Gareth Thomas

The recent discovery of giant magnetoresistance (GMR) in heterogeneous Cu1-xCox thin films has brought new insights in the phenomenon of GMR, which was previously believed to be restricted to multilayered structures only. Subsequent theoretical analyses of GMR in this new materials class have shown that GMR is mainly controlled by the mean radius and the volume fraction of single domain ferromagnetic particles. In addition to these parameters, the mean free path for electron in the non-magnetic matrix as well as coherency between particles and matrix are influencing the amplitude of GMR. Clearly, the key to increase the amplitude of GMR is to determine the decomposition kinetics and from which to optimize the single domain ferromagnetic Co particle size distribution in heterogeneous Cu1-xCox thin films.Cu81Col9 films, 50 nm in thickness, have been deposited by dc magnetron sputtering from separate Cu and Co targets onto 30 nm thick silicon nitride electron transparent grids.


This paper is an account of an experimental investigation of the motions of free electrons in air by the method developed by Townsend. An improved form of apparatus is described with the appropriate theory. The following parameters of the electronic motion were determined as functions of the ratio Z/p of the electric field strength Z to the gas pressure p : Townsend’s energy factor k r the drift velocity W , the mean free path at unit pressure L and the mean proportion n of its energy lost in collisions with gas molecules. The experimental data are given in the form of tables and curves. The drift velocity W is found by a new procedure based on the Hall effect and by comparing the velocities W so obtained with the direct measurements of W by Nielsen & Bradbury it is seen that the velocities of agitation are distributed approximately according to Druyvesteyn’s law when Z/p exceeds 0.5. Bailey’s factor G , which is of importance in ionospheric studies, is obtained from the experimental dependence of η on k r . Theoretical formulae are derived for k r and W in terms of L, G and Z/p . The theory of the new method for measuring W is given in an appendix.


2007 ◽  
Vol 593 ◽  
pp. 453-462 ◽  
Author(s):  
A. MANELA ◽  
N. G. HADJICONSTANTINOU

We analyse the time response of a gas confined in a small-scale gap (of the order of or smaller than the mean free path) to an instantaneous jump in the temperature of its boundaries. The problem is formulated for a collisionless gas in the case where the relative temperature jump at each wall is small and independent of the other. An analytic solution for the probability density function is obtained and the respective hydrodynamic fields are calculated. It is found that the characteristic time scale for arriving at the new equilibrium state is of the order of several acoustic time scales (the ratio of the gap width to the most probable molecular speed of gas molecules). The results are compared with direct Monte Carlo simulations of the Boltzmann equation and good agreement is found for non-dimensional times (scaled by the acoustic time) not exceeding the system Knudsen number. Thus, the present analysis describes the early-time behaviour of systems of arbitrary size and may be useful for prescribing the initial system behaviour in counterpart continuum-limit analyses.


2020 ◽  
Vol 493 (4) ◽  
pp. 5456-5463 ◽  
Author(s):  
Tunahan Demirci ◽  
Niclas Schneider ◽  
Tobias Steinpilz ◽  
Tabea Bogdan ◽  
Jens Teiser ◽  
...  

ABSTRACT A planetesimal moves through the gas of its protoplanetary disc where it experiences a head wind. Though the ambient pressure is low, this wind can erode and ultimately destroy the planetesimal if the flow is strong enough. For the first time, we observe wind erosion in ground-based and microgravity experiments at pressures relevant in protoplanetary discs, i.e. down to $10^{-1}\, \rm mbar$. We find that the required shear stress for erosion depends on the Knudsen number related to the grains at the surface. The critical shear stress to initiate erosion increases as particles become comparable to or larger than the mean free path of the gas molecules. This makes pebble pile planetesimals more stable at lower pressure. However, it does not save them as the experiments also show that the critical shear stress to initiate erosion is very low for sub-millimetre-sized grains.


2019 ◽  
Vol 30 (04) ◽  
pp. 1950024 ◽  
Author(s):  
Qing Xi ◽  
Yunyun Li ◽  
Jun Zhou ◽  
Baowen Li ◽  
Jun Liu

The heat transfer from nanoparticles (NPs) to gas of photothermal effect is investigated by taking into account both conduction and radiation. The steady-state and unsteady-state heat transfer processes are studied analytically and numerically, respectively. In contrast to the photothermal effect in liquid with metal NPs, in which the radiation is negligible, we found that the thermal radiation must be taken into account in the nanoparticle–gas system. The reason is that the thermal boundary conductance (TBC) of gas–solid interface is several orders of magnitude smaller than the TBC of liquid–solid interface, especially when the diameter of nanoparticle is comparable to or smaller than the mean free path of gas molecules. We propose a method to measure the ultra-low TBC of interface between nanoparticle and gas based on our investigations.


Sign in / Sign up

Export Citation Format

Share Document