scholarly journals Contrastive Learning Based on Transformer for Hyperspectral Image Classification

2021 ◽  
Vol 11 (18) ◽  
pp. 8670
Author(s):  
Xiang Hu ◽  
Teng Li ◽  
Tong Zhou ◽  
Yu Liu ◽  
Yuanxi Peng

Recently, deep learning has achieved breakthroughs in hyperspectral image (HSI) classification. Deep-learning-based classifiers require a large number of labeled samples for training to provide excellent performance. However, the availability of labeled data is limited due to the significant human resources and time costs of labeling hyperspectral data. Unsupervised learning for hyperspectral image classification has thus received increasing attention. In this paper, we propose a novel unsupervised framework based on a contrastive learning method and a transformer model for hyperspectral image classification. The experimental results prove that our model can efficiently extract hyperspectral image features in unsupervised situations.

2021 ◽  
Vol 13 (11) ◽  
pp. 2216
Author(s):  
Yuhao Qing ◽  
Wenyi Liu ◽  
Liuyan Feng ◽  
Wanjia Gao

In recent years, deep learning has been successfully applied to hyperspectral image classification (HSI) problems, with several convolutional neural network (CNN) based models achieving an appealing classification performance. However, due to the multi-band nature and the data redundancy of the hyperspectral data, the CNN model underperforms in such a continuous data domain. Thus, in this article, we propose an end-to-end transformer model entitled SAT Net that is appropriate for HSI classification and relies on the self-attention mechanism. The proposed model uses the spectral attention mechanism and the self-attention mechanism to extract the spectral–spatial features of the HSI image, respectively. Initially, the original HSI data are remapped into multiple vectors containing a series of planar 2D patches after passing through the spectral attention module. On each vector, we perform linear transformation compression to obtain the sequence vector length. During this process, we add the position–coding vector and the learnable–embedding vector to manage capturing the continuous spectrum relationship in the HSI at a long distance. Then, we employ several multiple multi-head self-attention modules to extract the image features and complete the proposed network with a residual network structure to solve the gradient dispersion and over-fitting problems. Finally, we employ a multilayer perceptron for the HSI classification. We evaluate SAT Net on three publicly available hyperspectral datasets and challenge our classification performance against five current classification methods employing several metrics, i.e., overall and average classification accuracy and Kappa coefficient. Our trials demonstrate that SAT Net attains a competitive classification highlighting that a Self-Attention Transformer network and is appealing for HSI classification.


2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


2019 ◽  
Vol 16 (5) ◽  
pp. 776-780 ◽  
Author(s):  
Juan M. Haut ◽  
Sergio Bernabe ◽  
Mercedes E. Paoletti ◽  
Ruben Fernandez-Beltran ◽  
Antonio Plaza ◽  
...  

2021 ◽  
Vol 13 (21) ◽  
pp. 4472
Author(s):  
Tianyu Zhang ◽  
Cuiping Shi ◽  
Diling Liao ◽  
Liguo Wang

Convolutional neural networks (CNNs) have been widely used in hyperspectral image classification in recent years. The training of CNNs relies on a large amount of labeled sample data. However, the number of labeled samples of hyperspectral data is relatively small. Moreover, for hyperspectral images, fully extracting spectral and spatial feature information is the key to achieve high classification performance. To solve the above issues, a deep spectral spatial inverted residuals network (DSSIRNet) is proposed. In this network, a data block random erasing strategy is introduced to alleviate the problem of limited labeled samples by data augmentation of small spatial blocks. In addition, a deep inverted residuals (DIR) module for spectral spatial feature extraction is proposed, which locks the effective features of each layer while avoiding network degradation. Furthermore, a global 3D attention module is proposed, which can realize the fine extraction of spectral and spatial global context information under the condition of the same number of input and output feature maps. Experiments are carried out on four commonly used hyperspectral datasets. A large number of experimental results show that compared with some state-of-the-art classification methods, the proposed method can provide higher classification accuracy for hyperspectral images.


Author(s):  
B. Saichandana ◽  
K. Srinivas ◽  
R. KiranKumar

<p>Hyperspectral remote sensors collect image data for a large number of narrow, adjacent spectral bands. Every pixel in hyperspectral image involves a continuous spectrum that is used to classify the objects with great detail and precision. This paper presents hyperspectral image classification mechanism using genetic algorithm with empirical mode decomposition and image fusion used in preprocessing stage. 2-D Empirical mode decomposition method is used to remove any noisy components in each band of the hyperspectral data. After filtering, image fusion is performed on the hyperspectral bands to selectively merge the maximum possible features from the source images to form a single image. This fused image is classified using genetic algorithm. Different indices, such as K-means (KMI), Davies-Bouldin Index (DBI), and Xie-Beni Index (XBI) are used as objective functions. This method increases classification accuracy of hyperspectral image.</p>


Sign in / Sign up

Export Citation Format

Share Document