scholarly journals Experimental Study of Perfobond Rib Shear Connector under Lateral Force

2021 ◽  
Vol 11 (19) ◽  
pp. 9088
Author(s):  
Xuewei Wang ◽  
Qiuxia He ◽  
Zhiwen An ◽  
Guojun Liu ◽  
Xingke Wen ◽  
...  

A series of full-scale pushed out tests were performed on the Perfobond rib shear connector. The tests were designed to examine the performance of the Perfobond rib shear connector under different rib hole sizes and shapes, reinforcing bar sizes, rib thicknesses, as well as the presence of lateral forces. It has been revealed from the test results that the rib hole size and reinforcement diameter may not act independently, and the influence of one’s size is actually dependent on the size of the other one. The lateral forces also affect the performance of the shear connector; for example, the capacity of the shear connector would be larger under compression than under tension. The existence of transverse pretension stress accelerated the cracking of concrete, leading to the strength and stiffness of concrete, perforated plate, and reinforcing rebars unable to fully exert their effect. In addition, the constraint effect of transverse stress improved the strength and stiffness of concrete and delayed the concrete cracking, bringing the strength and stiffness of concrete, perforated plate, and reinforcing rebars into full play, and resulting in a significant improvement in the shear capacity of Perfobond rib shear connectors.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
K. N. Lakshmikandhan ◽  
P. Sivakumar ◽  
R. Ravichandran ◽  
S. Arul Jayachandran

The strength of the composite deck slab depends mainly on the longitudinal shear transfer mechanism at the interface between steel and concrete. The bond strength developed by the cement paste is weak and causes premature failure of composite deck slab. This deficiency is effectively overcame by a shear transferring mechanism in the form of mechanical interlock through indentations, embossments, or fastening studs. Development of embossment patterns requires an advanced technology which makes the deck profile expensive. Fastening studs by welding weakens the joint strength and also escalates the cost. The present investigation is attempted to arrive at a better, simple interface mechanism. Three types of mechanical connector schemes are identified and investigated experimentally. All of the three shear connector schemes exhibited full shear interaction with negligible slip. The strength and stiffness of the composite slabs with shear connectors are superior about one and half time compared to these of the conventional reinforced concrete slabs and about twice compared to these of composite slabs without mechanical shear connectors. The scheme2 and scheme3 shear connector mechanisms integrate deck webs and improve strength and stiffness of the deck, which can effectively reduce the cost of formworks and supports efficiently.


2021 ◽  
Vol 295 (2) ◽  
pp. 16-26
Author(s):  
D.V. Konin ◽  

The shear connector design should be executed according to the SP 266.1325800.2016. For the different typed of welded connectors are there analytic dependences, which could be used for shear connection strength estimation. The design code also allows to use powder-actuated Z-shape shear connectors. Their bearing capacity should be proved by tests according to the GOST R 58336-2018. Inasmuch the GOST doesn't consist the test estimation approach, the authors offer the method. For the test estimation methods the test results of 15 series specimen had been used. The results were compared with estimation according to the European standard for the verification.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2958 ◽  
Author(s):  
Jun Chen ◽  
Wei Wang ◽  
Fa-Xing Ding ◽  
Ping Xiang ◽  
Yu-Jie Yu ◽  
...  

The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.


2006 ◽  
Vol 326-328 ◽  
pp. 1811-1816 ◽  
Author(s):  
Young Ho Kim ◽  
Jae Ho Jung ◽  
Soon Jong Yoon ◽  
Won Sup Jang

In the construction of composite bridge structures, various types of shear connectors are usually used to provide an efficient load transfer and the composite action of two or more different materials. In the previous work conducted by authors, a new type of the shear connector was introduced, which is the perforated shear connector with flange heads (T-shaped perforated shear connector), and the structural behavior of the shear connector was discussed based on the results of push-out tests. For the practical design of new shear connector, it is necessary to develop the equation for the prediction of the load carrying capacity of the shear connector. In this study, the existing design equations for the Perfobond shear connector were briefly analyzed and the equation for the prediction of the shear capacity of T-shaped perforated shear connector was suggested empirically. By comparing the results obtained by the suggested equation, the existing equations for the Perfobond shear connector, and the experiment, the applicability and effectiveness of the suggested equation was estimated.


2016 ◽  
Vol 13 (10) ◽  
pp. 6892-6895
Author(s):  
J Thivya ◽  
R Malathy ◽  
D Tensing

This study concerns the employment of pure torsion analysis to determine ultimate strength of composite beam with shear connectors. The effect of shear connector is used for increasing the strength and stiffness of composite beam. This behavior is influenced by physical response of the beam under pure torsion. Totally 12 beams are tested and comparative analysis has been made within this 12 beams. The curvature, rotation and angle of twist are calculated throughout entire load by torsion test. This investigation proves that the composite beam with 75 mm spaced shear connector provides good ultimate strength.


2018 ◽  
Vol 7 (3.9) ◽  
pp. 38 ◽  
Author(s):  
M M. Lawan ◽  
P N. Shek ◽  
M M. Tahir

For decades, Hot Rolled Steel (HRS) section was in use in construction of buildings and bridges. The simple reason is that the use of HRS section in composite systems is well established by standard rules and their design necessities as provided in the codes. In this paper, the use of doubly oriented back-to-back Cold-Formed Steel (CFS) section coupled with bolted shear connectors in composite floor system was demonstrated. The bolted system of shear connector provides an alternative to headed stud shear connector with CFS section as welding of the stud connector is practically not feasible on CFS section because of its thinness nature. The loading system used was four-point bending test to determine the flexural strength capabilities of the composite floor system. The resulting composite floor system has proven to provide adequate strength and stiffness properties under the applied loads. The results have shown that the theoretical value of flexural capacities calculated agrees reasonably well with the experimental values. In conclusion, the composite floor system can be used in small and medium size buildings, as well as in light weight construction industries.    


2019 ◽  
Vol 9 (4) ◽  
pp. 764 ◽  
Author(s):  
Shuangjie Zheng ◽  
Yuqing Liu ◽  
Yangqing Liu ◽  
Chen Zhao

To ease the installation of perforating rebars through multi-holes, an alternative notched perfobond shear connector was proposed by cutting out the hole edge. This paper presents the test results of six pull-out specimens with conventional and notched perfobond shear connectors. The objective was to compare the failure modes and pull-out behaviors of perfobond shear connectors using circular holes and notched holes. Furthermore, the explicit finite element method was introduced and validated to generate parametric results for pull-out tests of notched perfobond shear connectors. A total of 33 parametric simulations were performed to further study the influences of several variables, including the hole diameter, the cut width, the perfobond thickness, the concrete strength, the diameter and strength of the rebar, and the strength of the structural steel. The experimental and numerical results were used to evaluate the previous equations for perfobond shear connectors. Finally, an alternative equation was proposed to estimate the pull-out resistance of notched perfobond shear connectors.


2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Mustapha Muhammad Lawan ◽  
Mahmood Md. Tahir ◽  
Emad Hosseinpour

In conventional composite construction for hot-rolled steel (HRS) section, the composite action is usually achieved by using headed studs shear connectors. But, for cold-formed steel (CFS) section, the use of headed studs is not feasible as the section is very thin and difficult to be weld.  Therefore, an innovative way of shear connection mechanism of using bolt and nut is suggested in this study. This paper presents the feasibility of using bolt as shear connector by presenting experimental test results so as to explore more on their capability to be used as shear connectors. The study investigated the structural capability of the proposed bolted shear connector when used in concrete known as Self-compacting concrete (SCC) integrated with CFS to provide the required composite action. Push out test specimens with bolted shear connector of grade 8.8 at designated intervals longitudinally spaced were fabricated, cast and tested to failure. The results showed that the proposed shear connector was structurally capable and also an appreciable strength resistance was achieved. 


2014 ◽  
Vol 67 (3) ◽  
pp. 253-258 ◽  
Author(s):  
Gilson Queiroz ◽  
Hermes Carvalho ◽  
Francisco Rodrigues ◽  
Michèle Pfeilo

A shear connector, developed to be applied to a composite beam whose steel profile is a thin-walled box profile, displayed much greater flexibility than the conventional welded shear connector, leading to particular issues in the composite beam behaviour. One of these issues is the role played by friction at the interface between the steel profile and the slab which, under particular circumstances, may be relevant for serviceability limit states and also for ultimate limit states. The Brazilian and American Standards do not yet recognize the friction contribution in the behaviour of composite beams, though they recognize this contribution in composite slabs. This paper presents the experimental tests carried out with and without friction contribution on simple supported composite beams with flexible connectors and the numerical models developed to simulate the behaviour of the tested beams. The experimental tests revealed significant increases in strength and stiffness of the composite beam due to friction contribution and the comparisons between numerical and experimental results displayed good correlations.


Author(s):  
Achmad Abraham S. ARMO ◽  
Anis SAGGAFF ◽  
Mahmood Bin Md. TAHIR

New methods to provide shear strength on the cold-formed steel (CFS) lipped c-channel section composite beam encased with concrete partially is proposed using rebars embedded in concrete. The development of research on the CFS composite beams technology with partial encasement shows that the section of the composite beam encased with concrete partially can provide ductile flexural action for the composite beam. The application of profiled metal decking slabs in the composite beam is becoming increasingly popular compared to solid slabs. However, it has a detrimental effect on the structural behavior of a composite beam. This research is aimed primarily at presenting the behavior of the rebar shear connector to evaluated ductility, shear capacity, and modes of failure. Two samples using a rebar 12 mm in diameter in the profiled metal decking slabs and solid slabs were tested using the standard push-out test till failure. For the composite beam design, the proposed shear connector embedded in the slab concrete and the CFS encased with concrete partially used the test results’ shear capacity, greater than the values as proposed by section 3.1, BS 5950. Due to rebars shear-off, the solid slab specimen failed with the highest load of 489.6 kN while the Profiled Metal Decking Slab specimen failed due to the formation of the cracks on the PMDS at 421.1 KN ultimate loading. HIGHLIGHTS A new system of the rebar shear connectors for the Cold-Formed Steel (CFS) composite beam partially encased in concrete have been developed The main purpose of push-out testing is to investigate the shear capacity and ductility of the proposed shear connector failure modes and load-slip connections The shear capacity of the test results is greater than the values as indicated by BS 5950 Part 3.1 The proposed rebars as a shear connector for partly embedded CFS can be used in the construction GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document