scholarly journals Research on Computational Method of Supersonic Inlet/Isolator Internal Flow

2021 ◽  
Vol 11 (19) ◽  
pp. 9272
Author(s):  
Zhuoran Liu ◽  
Caizheng Wang ◽  
Ke Zhang ◽  
Zhuo Zhao ◽  
Zhifeng Xie

In this research, a CFD solver is developed for solving the 2D/3D compressible flow problem: the finite volume method based on multi-block structural grids is used to solve the compressible Reynolds averaged Navier–Stokes equations (RANS). Included in the methodology are multiple high-order reconstruction schemes, such as the 3rd-order MUSCL (Monotone Upstreamcentered Schemes for Conservation Laws), 5th-order WENO (Weight Essentially Non-Oscillatory), and 5th-order MP (Monotonicity-Preserving) schemes. Of the variety of turbulence models that are embedded, this solver is mainly based on the shear stress transport model (SST), which is compatible with OpenMP/MPI parallel algorithms. This research uses the CFD solver to conduct steady-state flow simulation for a two-dimensional supersonic inlet/isolator, incorporating these high-precision reconstruction schemes to accurately capture the shock wave/expansion wave interaction and shock wave/turbulent boundary layer interaction (SWTBLI), among other effects. By comparing the 2D/3D computation results of the same inlet configuration, it is found that the 3D effects of the side wall cannot be ignored due to the existing strong lateral flow near the corner. To obtain a more refined turbulence simulation, the commercial software ANSYS Fluent 18.0 is used to carry out the detached eddy simulation (DES) and the large eddy simulation (LES) of the same supersonic inlet, so as to reveal the flow details near the separation area and boundary layers.

Author(s):  
Hongsik Im ◽  
Xiangying Chen ◽  
Gecheng Zha

Detached eddy simulation of an aeroelastic self-excited instability, flutter in NASA Rotor 67 is conducted using a fully coupled fluid/structre interaction. Time accurate compressible 3D Navier-Stokes equations are solved with a system of 5 decoupled modal equations in a fully coupled manner. The 5th order WENO scheme for the inviscid flux and the 4th order central differencing for the viscous flux are used to accurately capture interactions between the flow and vibrating blades with the DES (detached eddy simulation) of turbulence. A moving mesh concept that can improve mesh quality over the rotor tip clearance was implemented. Flutter simulations were first conducted from choke to stall using 4 blade passages. Stall flutter initiated at rotating stall onset, grows dramatically with resonance. The frequency analysis shows that resonance occurs at the first mode of the rotor blade. Before stall, the predicted responses of rotor blades decayed with time, resulting in no flutter. Full annulus simulation at peak point verifies that one can use the multi-passage approach with periodic boundary for the flutter prediction.


2002 ◽  
Vol 124 (2) ◽  
pp. 413-423 ◽  
Author(s):  
L. S. Hedges ◽  
A. K. Travin ◽  
P. R. Spalart

The flow around a generic airliner landing-gear truck is calculated using the methods of Detached-Eddy Simulation, and of Unsteady Reynolds-Averaged Navier-Stokes Equations, with the Spalart-Allmaras one-equation model. The two simulations have identical numerics, using a multi-block structured grid with about 2.5 million points. The Reynolds number is 6×105. Comparison to the experiment of Lazos shows that the simulations predict the pressure on the wheels accurately for such a massively separated flow with strong interference. DES performs somewhat better than URANS. Drag and lift are not predicted as well. The time-averaged and instantaneous flow fields are studied, particularly to determine their suitability for the physics-based prediction of noise. The two time-averaged flow fields are similar, though the DES shows more turbulence intensity overall. The instantaneous flow fields are very dissimilar. DES develops a much wider range of unsteady scales of motion and appears promising for noise prediction, up to some frequency limit.


2018 ◽  
Vol 180 ◽  
pp. 02054
Author(s):  
Martin Lasota ◽  
Petr Šidlof

The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Quanlin Dong ◽  
Pengfei Wang

In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratioδhas received much attention, but most of the values ofδare very small (δ<0.1) or relatively small (δ≤0.5). As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES) turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.


2018 ◽  
Vol 240 ◽  
pp. 04001
Author(s):  
Ali Cemal Benim ◽  
Michael Diederich ◽  
Fethi Gül

Aerodynamic behavior of a small wind turbine is analyzed, both experimentally and numerically. Mainly, an unsteady three-dimensional formulation is adopted, where the flow turbulence is modelled by an Improved Delayed Detached Eddy Simulation framework, using the four-equation transitional Shear Stress Transport model, as the turbulence model. A quite good agreement between the measurements and calculations is observed.


Author(s):  
Xiaojing Wu ◽  
Shuhong Liu ◽  
Yulin Wu

In this paper, detached eddy simulation method is applied to the numerical simulation for whole passage of a model hydro turbine. The method combines the strong points of Reynolds-averaged Navier-Stokes and Large eddy simulation. In this model, Spalart–Allmaras turbulent model is improved, which reduces to a RANS formulation near a solid surface and to a subgrid model away from the wall. The hexahedron type mesh is used to divide the model, which can decrease the mesh scale and computation cost. In this paper, a unsteady turbulent simulation is done for model hydro turbine with this viscous model. The internal flow, vortex motion and pressure fluctuation inside hydro turbine can be studied from the result, which are also compared with the experiment data. It can be seen that this method can describe the complex flow of the turbine well while the mesh density is not very high.


2011 ◽  
Vol 121-126 ◽  
pp. 3657-3661
Author(s):  
Dun Zhang ◽  
Yuan Zheng ◽  
Ying Zhao ◽  
Jian Jun Huang

Numerical simulation of three-dimensional transient turbulent flow in the whole flow passage of a Francis turbine were based upon the large eddy simulation(LES) technique on Smargorinsky model and sliding mesh technology. The steady flow data simulated with the standard k-εmodel was used as the initial conditions for the unsteady simulation. The results show that LES can do well transient turbulent flow simulation in a Francis turbine with complex geometry. The computational method provides some reference for exploring the mechanism of eddy formation in a complex turbulent of hydraulic machinery.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin He ◽  
Yaqing Chen ◽  
Yilong Ma ◽  
Dengfeng Hu ◽  
Haoran Gao

A hybrid numerical simulation method was established by combining the Spalart-Allmaras (SA) turbulence model and detached eddy simulation (DES). Numerical simulations were carried out to model cold and hot spray conditions of a nozzle without considering the internal flow of an engine to determine jet conditions. Analysis results show that the calculated hot spray results more in line with the reality. The jet effect of a typical aircraft engine was simulated numerically to determine the distance influenced by the jet blast from a departing aircraft engine.


Author(s):  
Lokesh Kalyan Gutti ◽  
◽  
Bhupendra Singh Chauhan ◽  
Hee-Chang Lim ◽  
◽  
...  

For incompressible flow simulation, it is commonly accepted to use uniform meshes to solve the governing equation of turbulent boundary layer. It follows the laws of conservation stabilizing the flow field in the domain and preventing odd-even decoupling in the pressure field. In this study, Large Eddy Simulation (LES) has been conducted in a long channel. In order to calculate the turbulent boundary layer in the channel, the unsteady Navier-Stokes equations has been adopted at a Reynolds number =180, which is based on mean centerline velocity and the half-width of the channel. The mesh used in this study was based on both stretch and uniform mesh having grid points, which is corresponding to . Turbulence statistics were also calculated to compare to the existing results. In the results, the turbu lent boundary layer was fully developed at around . In addition, fully developed channel flow was achieved at the non-dimensional time of .


Sign in / Sign up

Export Citation Format

Share Document