scholarly journals Investigation of Ancient Wall Painting Fragments Discovered in the Roman Baths from Alburnus Maior by Complementary Non-Destructive Techniques

2021 ◽  
Vol 11 (21) ◽  
pp. 10049
Author(s):  
Ioana Maria Cortea ◽  
Lucian Ratoiu ◽  
Luminița Ghervase ◽  
Ovidiu Țentea ◽  
Mihaela Dinu

In this study, several wall painting fragments discovered in the Roman baths from the archeological site Alburnus Maior (Roşia Montană, Romania) were analyzed with the aim to investigate the material composition of both plasters and pictorial layers. Dated from the beginning of the second century AD, these rare findings stand among the oldest examples of preserved decorative polychrome paintings on plaster excavated thus far in the former territory of the Roman province of Dacia. A non-destructive multi-analytical approach based on complementary techniques was considered: Fourier transform infrared (FTIR) spectroscopy, X-ray fluorescence (XRF), X-ray diffraction (XRD), UV fluorescence, and hyperspectral imaging (HSI). The obtained results highlight a common Roman color palette mainly based on naturally occurring earth pigments. Red ochre, yellow ochre, manganese-rich ochres/wads, carbon black, and calcite were identified. A traditional two-layer sequence of plasters was found—arriccio (based on lime and siliceous sands), and intonaco (pure lime). The presence of an organic protein binder, identified via FTIR analysis, and sustained by combined imaging documentation, indicates that the pigments were applied a secco. The obtained results are discussed in relation to previous published data, and they can be considered as valuable archeological indicators that contribute to the understanding of the painting techniques and the materials used in the Roman provinces.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1913
Author(s):  
Sergio Augusto Barcellos Lins ◽  
Marta Manso ◽  
Pedro Augusto Barcellos Lins ◽  
Antonio Brunetti ◽  
Armida Sodo ◽  
...  

A modular X-ray scanning system was developed, to fill in the gap between portable instruments (with a limited analytical area) and mobile instruments (with large analytical areas, and sometimes bulky and difficult to transport). The scanner has been compared to a commercial tabletop instrument, by analysing a Portuguese tile (azulejo) from the 17th century. Complementary techniques were used to achieve a throughout characterisation of the sample in a complete non-destructive approach. The complexity of the acquired X-ray fluorescence (XRF) spectra, due to inherent sample stratigraphy, has been resolved using Monte Carlo simulations, and Raman spectroscopy, as the most suitable technique to complement the analysis of azulejos colours, yielding satisfactory results. The colouring agents were identified as cobalt blue and a Zn-modified Naples-yellow. The stratigraphy of the area under study was partially modelled with Monte Carlo simulations. The scanners performance has been compared by evaluating the images outputs and the global spectrum.


2015 ◽  
Vol 22 (2) ◽  
pp. 336-341 ◽  
Author(s):  
E. Nazaretski ◽  
K. Lauer ◽  
H. Yan ◽  
N. Bouet ◽  
J. Zhou ◽  
...  

Hard X-ray microscopy is a prominent tool suitable for nanoscale-resolution non-destructive imaging of various materials used in different areas of science and technology. With an ongoing effort to push the 2D/3D imaging resolution down to 10 nm in the hard X-ray regime, both the fabrication of nano-focusing optics and the stability of the microscope using those optics become extremely challenging. In this work a microscopy system designed and constructed to accommodate multilayer Laue lenses as nanofocusing optics is presented. The developed apparatus has been thoroughly characterized in terms of resolution and stability followed by imaging experiments at a synchrotron facility. Drift rates of ∼2 nm h−1accompanied by 13 nm × 33 nm imaging resolution at 11.8 keV are reported.


1958 ◽  
Vol 2 ◽  
pp. 275-281
Author(s):  
Beverley James Lowe ◽  
Payson D. Sierer ◽  
Robert B. Ogilvie

AbstractThe paper is based on a feasibility study to determine the suitability of various techniques for the non-destructive measurement of cladding thickness on uranium fuel elements. The techniques studied were: 1—the attentuation of the characteristic X-ray fluorescence from the uranium base metal by the cladding material, and 2—Compton scattering of X-rays from the cladding surface. The cladding materials used in the investigation were aluminum, 304 stainless steel and zirconium, providing a wide range of both atomic number and density.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Edgar Casanova-González ◽  
Miguel Ángel Maynez-Rojas ◽  
Alejandro Mitrani ◽  
Isaac Rangel-Chávez ◽  
María Angélica García-Bucio ◽  
...  

Abstract Almost three hundred Spanish colonial missions—or their remains—are scattered over the vast state of Chihuahua in northern Mexico. A few of them still display painted decorations on the wood ceilings and walls. The decorated areas vary greatly, from the whole ceiling of the main aisle to just a few square meters in a lateral chapel, and so does the conservation state of the paintings. In this context, the information regarding the paintings’ composition plays a key role in the restoration and conservation processes. For the gathering of such information, we propose a combined methodology for a fast, non-destructive and non-invasive characterization of such paintings with a minimum of techniques. This methodology includes false color infrared imaging as a first approach to determine the composition of large areas of the paintings and the homogeneity of the materials used in the painted areas, followed by small area analysis by X-ray fluorescence and fiber-optics reflectance spectroscopy. This methodology was applied to characterize the elemental and molecular composition of the decorations for four missions in Chihuahua in a fast and specific manner, revealing the use of a mix of mineral and organic materials including indigo and cochineal, and detecting differences between the missions. The methodology presented here can be easily applied for the study of a wider number of missions in Chihuahua and other regions to provide outstanding information of materials, pictorial techniques and deterioration conditions.


Author(s):  
Danilo Dini ◽  
Flavio Cognigni ◽  
Daniele Passeri ◽  
Francesca Anna Scaramuzzo ◽  
Mauro Pasquali ◽  
...  

Abstract The present review analyses the recent literature on the combined use of X-ray microscopy (XRM) and atomic force microscopy (AFM) for multiscale characterization of Li+ (or Li) batteries (LiBs) with the aim of developing guidelines for correlative analysis. The usefulness of XRM resides in the capability of affording non invasively in situ images of the inner parts of a LiB (an encapsulated device) with spatial resolution of dozens of nm during operation. XRM is non destructive and affords the early diagnosis of LiBs degradation causes when these manifest themselves as microdeformations. Multiscale characterization of LiBs also requires AFM for visualizing the morphological/physical alterations of LiB components (anodes, cathodes, electrolyte) at the sub-nanometer level. Different to XRM, AFM necessitates of a modification of LiB working configuration since AFM uses a contacting probe whereas XRM exploits radiation-matter interactions and does not require LiB dissection. A description of the working principles of the two techniques is provided to evidence which technical aspects have to be considered for achieving a meaningful correlative analysis of LiBs. In delineating new perspectives for the analysis of LiBs we will consider additional complementary techniques. Among various AFM-based techniques particular emphasis is given to electrochemical AFM (EC-AFM).


10.14311/772 ◽  
2005 ◽  
Vol 45 (5) ◽  
Author(s):  
T. Čechák ◽  
L. Musílek ◽  
T. Trojek ◽  
I. Kopecká

Nuclear techniques and other techniques using ionising radiation represent a valuable tool in non-destructive diagnostics applied to archaeological finds and objects of arts, namely for determining the composition of materials used in the production of artefacts. X-ray fluorescence analysis, both in its energy form and in its wave dispersive form, is one of the most widespread methods using ionising radiation to study the elemental composition of materials. It is frequently used for studies of various cultural and historic relicts and objects of art. This work summarizes the authors’ experience with X-ray fluorescence analysis in investigating historical frescos namely by means of portable provide spectroscopic devices. The results of these measurements information on the composition of the pigments, enable the comparison of processes used in the fabrication of pigments by individual artists, and in many cases offer information on how to repair the damaged parts. 


Secreta Artis ◽  
2021 ◽  
pp. 84-95
Author(s):  
Brian Baade ◽  
Kristin DeGhetaldi ◽  
Alyssa Rina

Changes in the formulation of pigments and paint binders and the presence of additives used in the history of painting can complicate the interpretation of analytical data and may influence the characterization of the materials used in artworks. The limitations of the common analytical tools used to identify potential paint components including metallic driers, pigments, and the inorganic substrates of lake colors may also make analysis more difficult. X-Ray Fluorescence (XRF) spectroscopy is a common non-destructive technique used to collect inorganic elemental information from artworks. Advancements in XRF technology now permit the gathering of data from multi-layered paint systems and scanning technology can help characterize pigments across the entire surface of an artwork. These tools require an even greater understanding of the potential materials in an artwork to avoid misinterpretation of the data. The authors tested XRF’s ability to characterize lead, manganese, and cobalt driers. The presence of metallic driers could have an impact on the interpretation of the inorganic components in paint films. Lake pigment substrates often contain aluminum, tin, and calcium salts. The detection of these ions was also studied. Finally, the XRF detection of aluminum in lapis lazuli samples was assessed. These three groups of materials were also mixed with driers and/or other pigments to determine whether the presence of additional metal ions inhibited the detection of the characteristic elements. The authors used a Bruker ArtTax Micro XRF and a handheld Bruker Tracer III-SD XRF unit with and without a vacuum or helium purge for these experiments.


Author(s):  
A. R. Lang

AbstractX-ray topography provides a non-destructive method of mapping point-by-point variations in orientation and reflecting power within crystals. The discovery, made by several workers independently, that in nearly perfect crystals it was possible to detect individual dislocations by X-ray diffraction contrast started an epoch of rapid exploitation of X-ray topography as a new, general method for assessing crystal perfection. Another discovery, that of X-ray Pendellösung, led to important theoretical developments in X-ray diffraction theory and to a new and precise method for measuring structure factors on an absolute scale. Other highlights picked out for mention are studies of Frank-Read dislocation sources, the discovery of long dislocation helices and lines of coaxial dislocation loops in aluminium, of internal magnetic domain structures in Fe-3 wt.% Si, and of stacking faults in silicon and natural diamonds.


1983 ◽  
Vol 27 ◽  
Author(s):  
L. Salamanca-Riba ◽  
B.S. Elman ◽  
M.S. Dresselhaus ◽  
T. Venkatesan

ABSTRACTRutherford backscattering spectrometry (RBS) is used to characterize the stoichiometry of graphite intercalation compounds (GIC). Specific application is made to several stages of different donor and acceptor compounds and to commensurate and incommensurate intercalants. A deviation from the theoretical stoichiometry is measured for most of the compounds using this non-destructive method. Within experimental error, the RBS results agree with those obtained from analysis of the (00ℓ) x-ray diffractograms and weight uptake measurements on the same samples.


Sign in / Sign up

Export Citation Format

Share Document