scholarly journals Effect of Polarization on Performance of Inverted Solar Cells Based on Molecular Ferroelectric 1,6-Hexanediamine Pentaiodide Bismuth with PCBM as Electron Transport Layer

2021 ◽  
Vol 11 (21) ◽  
pp. 10494
Author(s):  
Xiaolan Wang ◽  
Xiaoping Zou ◽  
Jialin Zhu ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

The depolarization field of ferroelectric photovoltaic materials can enhance the separation and transport of photogenerated carriers, which will improve the performance of photovoltaic devices, thus attracting the attention of researchers. In this paper, a narrow bandgap molecular ferroelectric Hexane-1,6-diammonium pentaiodobismuth (HDA-BiI5) was selected as the photo absorption layer for the fabrication of solar cells. After optimizing the ferroelectric thin film by the antisolvent process, the effect of different polarization voltages on the performance of ferroelectric devices was studied. The results showed that there was a significant increase in short-circuit current density, and the photoelectric conversion efficiency showed an overall increasing trend. Finally, we analyzed the internal mechanism of the effect of polarization on the device.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lin Li ◽  
Xiaoping Zou ◽  
Hongquan Zhou ◽  
Gongqing Teng

Cu-doped-CdS and In-doped-CdS cosensitized (Cu-doped-CdS/In-doped-CdS) quantum dot solar cells (QDSCs) are introduced here. Different cosensitized sequences, doping ratios, and the thickness (SILAR cycles) of Cu-doped-CdS and In-doped-CdS are discussed. Compared with undoped CdS QDSCs, the short circuit current density, UV-Vis absorption spectra, IPCE (monochromatic incident photon-to-electron conversion), open circuit voltage, and so on are all improved. The photoelectric conversion efficiency has obviously improved from 0.71% to 1.28%.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 354
Author(s):  
Shaoxi Wang ◽  
He Guan ◽  
Yue Yin ◽  
Chunfu Zhang

With the continuous development of solar cells, the perovskite solar cells (PSCs), whose hole transport layer plays a vital part in collection of photogenerated carriers, have been studied by many researchers. Interface transport layers are important for efficiency and stability enhancement. In this paper, we demonstrated that lithium (Li) and cobalt (Co) codoped in the novel inorganic hole transport layer named NiOx, which were deposited onto ITO substrates via solution methods at room temperature, can greatly enhance performance based on inverted structures of planar heterojunction PSCs. Compared to the pristine NiOx films, doping a certain amount of Li and Co can increase optical transparency, work function, electrical conductivity and hole mobility of NiOx film. Furthermore, experimental results certified that coating CH3NH3PbIxCl3−x perovskite films on Li and Co- NiOx electrode interlayer film can improve chemical stability and absorbing ability of sunlight than the pristine NiOx. Consequently, the power conversion efficiency (PCE) of PSCs has a great improvement from 14.1% to 18.7% when codoped with 10% Li and 5% Co in NiOx. Moreover, the short-circuit current density (Jsc) was increased from 20.09 mA/cm2 to 21.7 mA/cm2 and the fill factor (FF) was enhanced from 0.70 to 0.75 for the PSCs. The experiment results demonstrated that the Li and Co codoped NiOx can be a effective dopant to improve the performance of the PSCs.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 147 ◽  
Author(s):  
Mao Jiang ◽  
Qiaoli Niu ◽  
Xiao Tang ◽  
Heyi Zhang ◽  
Haowen Xu ◽  
...  

The commonly used electron transport material (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) for perovskite solar cells (PSC) with inverted planar structures suffers from properties such as poor film-forming. In this manuscript, we demonstrate a simple method to improve the film-forming properties of PCBM by doping PCBM with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as the electron transport layer (ETL), which effectively enhances the performance of CH3NH3PbI3 based solar cells. With 5 wt % F8BT in PCBM, the short circuit current (JSC) and fill factor (FF) of PSC both significantly increased from 17.21 ± 0.15 mA·cm−2 and 71.1 ± 0.07% to 19.28 ± 0.22 mA·cm−2 and 74.7 ± 0.21%, respectively, which led to a power conversion efficiency (PCE) improvement from 12.6 ± 0.24% to 15 ± 0.26%. The morphology investigation suggested that doping with F8BT facilitated the formation of a smooth and uniform ETL, which was favorable for the separation of electron-hole pairs, and therefore, an improved performance of PSC.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Feng-Hao Hsu ◽  
Na-Fu Wang ◽  
Yu-Zen Tsai ◽  
Ming-Hao Chien ◽  
Mau-Phon Houng

This study confirms that the surface texturation of window layer (Al-Y codoped ZnO) etched by diluted HCl effectively increases conversion efficiency of p-Ni1−xO:Li/n-Si heterojunction solar cells. The results show that the short circuit current density (Jsc) of cell etched at 10 s increases about 8.5% compared to unetched cell, which also corresponds to the increase of efficient photoelectric conversion in NIR region as shown in external quantum efficiency spectra. It is attributed to the increase of light transmittance of AZOY thin films in the NIR region and the effective light path of the NIR wavelength, which results in increasing of light absorption in the base layer.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 629
Author(s):  
Hoang Van Quy ◽  
Dang Hai Truyen ◽  
Sangmo Kim ◽  
Chung Wung Bark

The electron transport layer (ETL) of organic–inorganic perovskite solar cells plays an important role in their power conversion efficiency (PCE). In this study, TiO2 hollow nanospheres with a diameter of 150 nm were prepared by a facile synthesis method. The synthesized TiO2 hollow nanospheres had a highly porous structure with a surface area of 85.23 m2 g−1, which is significantly higher than commercial TiO2 (P25) (54.32 m2 g−1), indicating that they can form an ideal mesoporous layer for Formamidinium iodide-based perovskite solar cells (PSCs). In addition, the nanospheres achieved a remarkable perovskite performance, and the average PCE increased from 12.87% to 14.27% with a short circuit current density of 22.36 mAcm−2, an open voltage of 0.95 V, and a fill factor of 0.65. The scanning electron microscopy images revealed that the enhanced PCE could be due to the improved carrier collection and transport properties of the nanosphere, which enabled efficient filtration of perovskite into the TiO2 mesoporous ETL. The TiO2 hollow nanospheres fabricated in this study show high potential as a high-quality ETL material for efficient (FAPbI3)0.97(MAPbBr3)0.03-based PSCs.


Nanoscale ◽  
2021 ◽  
Author(s):  
Rabia Bashir ◽  
Muhammad Kashif Bilal ◽  
Amna Bashir ◽  
Jianhong Zhao ◽  
Sana Ullah Asif ◽  
...  

Colloidal quantum dots solar cells (CQDSCs) have achieved remarkable progress recently in terms of mainly surface passivation and composition-matching matrices on CQDs, while improving the overall photoelectric conversion efficiency (PCE)...


2011 ◽  
Vol 347-353 ◽  
pp. 906-911
Author(s):  
Zhi Qiang Hu ◽  
De Feng Huang ◽  
Xian Qing Liu ◽  
Hong Gao ◽  
Hong Shun Hao

Liquid electrolyte for dye-sensitized solar cells (DSSCs) was prepared by using the mixture of sulfolane and 3-methoxypropionitrile as a solvent, 4-tert-butylpyridine as an additive. The influences of sulfolane on electrolyte conductivity, photoelectric performances and the DSSCs stability were investigated. The results indicated that when the ratio of 3-methoxypropionitrile to sulfolane achieves 3:2, the cell showed the optimal photoelectric properties and stability, and the short-circuit current and photoelectric conversion efficiency achieved 7.58mA/cm2 and 2.79%, respectively.


Sign in / Sign up

Export Citation Format

Share Document