scholarly journals Electrothermal Reliability of the High Electron Mobility Transistor (HEMT)

2021 ◽  
Vol 11 (22) ◽  
pp. 10720
Author(s):  
Abdelhamid Amar ◽  
Bouchaïb Radi ◽  
Abdelkhalak El Hami

The main objective of our paper is to propose an approach to studying the mechatronic system’s reliability through the reliability of their high electron mobility transistors (HEMT). The operating temperature is one of the parameters that influences the characteristics of the transistor, especially the electron mobility that represents an advantage over other transistor’s families. Several factors can influence this temperature. Thanks to thermal modeling, it is possible to determine the factors representing a great impact on the operating temperature, such as the power dissipation at the active area of the transistor and the reference temperature above the substrate. In our reliability study, these analytical methods, such as First and Second Order Reliability Methods (FORM and SORM, respectively), were used to analyze the HEMT reliability. Thanks to the coupling between two models—the reliability model coded on Matlab and the thermal modeling with Comsol multiphysics software—the reliability index and the failure probability of the studied system were evaluated.

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 546 ◽  
Author(s):  
Wojciech Wojtasiak ◽  
Marcin Góralczyk ◽  
Daniel Gryglewski ◽  
Marcin Zając ◽  
Robert Kucharski ◽  
...  

AlGaN/GaN high electron mobility transistors on semi-insulating bulk ammonothermal GaN have been investigated. By application of regrown ohmic contacts, the problem with obtaining low resistance ohmic contacts to low-dislocation high electron mobility transistor (HEMT) structures was solved. The maximum output current was about 1 A/mm and contact resistances was in the range of 0.3–0.6 Ω ·mm. Good microwave performance was obtained due to the absence of parasitic elements such as high access resistance.


2019 ◽  
Vol 33 (18) ◽  
pp. 1950190
Author(s):  
Hai Li Wang ◽  
Peng Yang ◽  
Kun Xu ◽  
Xiang Yang Duan ◽  
Shu Xiang Sun

In this paper, we investigated the impact of thickness and mole fraction AlInGaN back barrier on the DC performance of AlGaN/GaN high electron mobility transistors (HEMTs) by numerical simulation. The simulations are performed using the hydrodynamic transport model (HD). The simulation results indicated that an inserted AlInGaN back barrier with increasing thickness and mole fraction could effectively confine the electron in the channel, resulting in a significant improvement of the channel current and transconductance. Additionally, the variation of conduction band offset and the increase of total number electron in the channel led to the threshold voltage moving toward a more negative value.


2015 ◽  
Vol 764-765 ◽  
pp. 486-490
Author(s):  
Chih Hao Wang ◽  
Liang Yu Su ◽  
Finella Lee ◽  
Jian Jang Huang

We demonstrate a novel design of large-size device in AlGaN/GaN high-electron-mobility transistor (HEMT). Depletion mode (D-mode) HEMTs and enhancement mode (E-mode) HEMTs are fabricated in our research. The saturation current of D-mode HEMTs is over 6A. By using Cascode structure, the D-mode HEMT becomes a normally-off device efficiently, and the threshold voltage of it rises from-7V to 2V. By using BCB (Benzocyclobutene) as the passivation, the E-mode HEMT shows an excellent characteristic. Also, when the VGS of the E-mode HEMT is over 9V, it still shows a good performance.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1599 ◽  
Author(s):  
Fabrizio Roccaforte ◽  
Giuseppe Greco ◽  
Patrick Fiorenza ◽  
Ferdinando Iucolano

Today, the introduction of wide band gap (WBG) semiconductors in power electronics has become mandatory to improve the energy efficiency of devices and modules and to reduce the overall electric power consumption in the world. Due to its excellent properties, gallium nitride (GaN) and related alloys (e.g., AlxGa1−xN) are promising semiconductors for the next generation of high-power and high-frequency devices. However, there are still several technological concerns hindering the complete exploitation of these materials. As an example, high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures are inherently normally-on devices. However, normally-off operation is often desired in many power electronics applications. This review paper will give a brief overview on some scientific and technological aspects related to the current normally-off GaN HEMTs technology. A special focus will be put on the p-GaN gate and on the recessed gate hybrid metal insulator semiconductor high electron mobility transistor (MISHEMT), discussing the role of the metal on the p-GaN gate and of the insulator in the recessed MISHEMT region. Finally, the advantages and disadvantages in the processing and performances of the most common technological solutions for normally-off GaN transistors will be summarized.


2009 ◽  
Vol 1202 ◽  
Author(s):  
Byung Hwan Chu ◽  
Hon-way Lin ◽  
Shangjr Gwo ◽  
Yu-Lin Wang ◽  
S. J. Pearton ◽  
...  

AbstractChloride ion concentration can be used as a biomarker for the level of pollen exposure in allergic asthma, chronic cough and airway acidification related to respiratory disease. AlGaN/GaN high electron mobility transistor (HEMT) with an InN thin film in the gate region was used for real time detection of chloride ion detection. The InN thin film provided surface sites for reversible anion coordination. The sensor exhibited significant changes in channel conductance upon exposure to various concentrations of NaCl solutions. The sensor was tested over the range of 100 nM to 100 μM NaCl solutions. The effect of cations on the chloride ion detection was also studied.


2021 ◽  
pp. 108050
Author(s):  
Maria Glória Caño de Andrade ◽  
Luis Felipe de Oliveira Bergamim ◽  
Braz Baptista Júnior ◽  
Carlos Roberto Nogueira ◽  
Fábio Alex da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document