scholarly journals Spatio-Temporal Deep Learning-Based Methods for Defect Detection: An Industrial Application Study Case

2021 ◽  
Vol 11 (22) ◽  
pp. 10861
Author(s):  
Lucas A. da Silva ◽  
Eulanda M. dos Santos ◽  
Leo Araújo ◽  
Natalia S. Freire ◽  
Max Vasconcelos ◽  
...  

Data-driven methods—particularly machine learning techniques—are expected to play a key role in the headway of Industry 4.0. One increasingly popular application in this context is when anomaly detection is employed to test manufactured goods in assembly lines. In this work, we compare supervised, semi/weakly-supervised, and unsupervised strategies to detect anomalous sequences in video samples which may be indicative of defective televisions assembled in a factory. We compare 3D autoencoders, convolutional neural networks, and generative adversarial networks (GANs) with data collected in a laboratory. Our methodology to simulate anomalies commonly found in TV devices is discussed in this paper. We also propose an approach to generate anomalous sequences similar to those produced by a defective device as part of our GAN approach. Our results show that autoencoders perform poorly when trained with only non-anomalous data—which is important because class imbalance in industrial applications is typically skewed towards the non-anomalous class. However, we show that fine-tuning the GAN is a feasible approach to overcome this problem, achieving results comparable to those of supervised methods.

2018 ◽  
Vol 10 (12) ◽  
pp. 1970 ◽  
Author(s):  
Kun Fu ◽  
Wanxuan Lu ◽  
Wenhui Diao ◽  
Menglong Yan ◽  
Hao Sun ◽  
...  

Binary segmentation in remote sensing aims to obtain binary prediction mask classifying each pixel in the given image. Deep learning methods have shown outstanding performance in this task. These existing methods in fully supervised manner need massive high-quality datasets with manual pixel-level annotations. However, the annotations are generally expensive and sometimes unreliable. Recently, using only image-level annotations, weakly supervised methods have proven to be effective in natural imagery, which significantly reduce the dependence on manual fine labeling. In this paper, we review existing methods and propose a novel weakly supervised binary segmentation framework, which is capable of addressing the issue of class imbalance via a balanced binary training strategy. Besides, a weakly supervised feature-fusion network (WSF-Net) is introduced to adapt to the unique characteristics of objects in remote sensing image. The experiments were implemented on two challenging remote sensing datasets: Water dataset and Cloud dataset. Water dataset is acquired by Google Earth with a resolution of 0.5 m, and Cloud dataset is acquired by Gaofen-1 satellite with a resolution of 16 m. The results demonstrate that using only image-level annotations, our method can achieve comparable results to fully supervised methods.


Risks ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Kwanda Sydwell Ngwenduna ◽  
Rendani Mbuvha

To build adequate predictive models, a substantial amount of data is desirable. However, when expanding to new or unexplored territories, this required level of information is rarely always available. To build such models, actuaries often have to: procure data from local providers, use limited unsuitable industry and public research, or rely on extrapolations from other better-known markets. Another common pathology when applying machine learning techniques in actuarial domains is the prevalence of imbalanced classes where risk events of interest, such as mortality and fraud, are under-represented in data. In this work, we show how an implicit model using the Generative Adversarial Network (GAN) can alleviate these problems through the generation of adequate quality data from very limited or highly imbalanced samples. We provide an introduction to GANs and how they are used to synthesize data that accurately enhance the data resolution of very infrequent events and improve model robustness. Overall, we show a significant superiority of GANs for boosting predictive models when compared to competing approaches on benchmark data sets. This work offers numerous of contributions to actuaries with applications to inter alia new sample creation, data augmentation, boosting predictive models, anomaly detection, and missing data imputation.


2021 ◽  
Vol 14 (2) ◽  
pp. 201-214
Author(s):  
Danilo Croce ◽  
Giuseppe Castellucci ◽  
Roberto Basili

In recent years, Deep Learning methods have become very popular in classification tasks for Natural Language Processing (NLP); this is mainly due to their ability to reach high performances by relying on very simple input representations, i.e., raw tokens. One of the drawbacks of deep architectures is the large amount of annotated data required for an effective training. Usually, in Machine Learning this problem is mitigated by the usage of semi-supervised methods or, more recently, by using Transfer Learning, in the context of deep architectures. One recent promising method to enable semi-supervised learning in deep architectures has been formalized within Semi-Supervised Generative Adversarial Networks (SS-GANs) in the context of Computer Vision. In this paper, we adopt the SS-GAN framework to enable semi-supervised learning in the context of NLP. We demonstrate how an SS-GAN can boost the performances of simple architectures when operating in expressive low-dimensional embeddings; these are derived by combining the unsupervised approximation of linguistic Reproducing Kernel Hilbert Spaces and the so-called Universal Sentence Encoders. We experimentally evaluate the proposed approach over a semantic classification task, i.e., Question Classification, by considering different sizes of training material and different numbers of target classes. By applying such adversarial schema to a simple Multi-Layer Perceptron, a classifier trained over a subset derived from 1% of the original training material achieves 92% of accuracy. Moreover, when considering a complex classification schema, e.g., involving 50 classes, the proposed method outperforms state-of-the-art alternatives such as BERT.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3382
Author(s):  
Zhongwei Zhang ◽  
Mingyu Shao ◽  
Liping Wang ◽  
Sujuan Shao ◽  
Chicheng Ma

As the key component to transmit power and torque, the fault diagnosis of rotating machinery is crucial to guarantee the reliable operation of mechanical equipment. Regrettably, sample class imbalance is a common phenomenon in industrial applications, which causes large cross-domain distribution discrepancies for domain adaptation (DA) and results in performance degradation for most of the existing mechanical fault diagnosis approaches. To address this issue, a novel DA approach that simultaneously reduces the cross-domain distribution difference and the geometric difference is proposed, which is defined as MRMI. This work contains three parts to improve the sample class imbalance issue: (1) A novel distance metric method (MVD) is proposed and applied to improve the performance of marginal distribution adaptation. (2) Manifold regularization is combined with instance reweighting to simultaneously explore the intrinsic manifold structure and remove irrelevant source-domain samples adaptively. (3) The ℓ2-norm regularization is applied as the data preprocessing tool to improve the model generalization performance. The gear and rolling bearing datasets with class imbalanced samples are applied to validate the reliability of MRMI. According to the fault diagnosis results, MRMI can significantly outperform competitive approaches under the condition of sample class imbalance.


Author(s):  
Muhammad Imran ◽  
Shahzad Latif ◽  
Danish Mehmood ◽  
Muhammad Saqlain Shah

Automatic Student performance prediction is a crucial job due to the large volume of data in educational databases. This job is being addressed by educational data mining (EDM). EDM develop methods for discovering data that is derived from educational environment. These methods are used for understanding student and their learning environment. The educational institutions are often curious that how many students will be pass/fail for necessary arrangements. In previous studies, it has been observed that many researchers have intension on the selection of appropriate algorithm for just classification and ignores the solutions of the problems which comes during data mining phases such as data high dimensionality ,class imbalance and classification error etc. Such types of problems reduced the accuracy of the model. Several well-known classification algorithms are applied in this domain but this paper proposed a student performance prediction model based on supervised learning decision tree classifier. In addition, an ensemble method is applied to improve the performance of the classifier. Ensemble methods approach is designed to solve classification, predictions problems. This study proves the importance of data preprocessing and algorithms fine-tuning tasks to resolve the data quality issues. The experimental dataset used in this work belongs to Alentejo region of Portugal which is obtained from UCI Machine Learning Repository. Three supervised learning algorithms (J48, NNge and MLP) are employed in this study for experimental purposes. The results showed that J48 achieved highest accuracy 95.78% among others.


Sign in / Sign up

Export Citation Format

Share Document