scholarly journals Scaled Experiment of the Detonation Control System for the High-Speed Penetration on Concrete

2021 ◽  
Vol 11 (23) ◽  
pp. 11556
Author(s):  
Huan Yan ◽  
Shiqiao Gao ◽  
Lei Jin

The design scheme and fabrication technology of the detonation control system for the high-speed deep penetration need to be tested for reliability and effectiveness through shooting range tests. However, the shooting range tests of the high-speed deep penetration are so demanding and expensive that it is difficult for the detonation control system to be tested many times. This paper focuses on penetration characteristics of the detonation control system to put forward a laboratory-scaled experiment method with the low impact velocity. Independent parameters of projectile and target affecting the penetration characteristics are effectively analyzed and extracted. A multi-parameter programming method of the scaled experiment for high-speed deep penetration is established. By adjusting the key parameters, the loading conditions of the scaled experiment can be obtained, which can get the comparable deceleration curve with those of the high-speed deep penetration. Finally, the extreme working environment for the detonation control system in the high-speed deep penetration is simulated through the scaled experiment in the laboratory. The scaled experiment method can get the comparable deceleration peak and time history. It is highly economical, and the experimental process is also repeatable, which can provide a reliable reference for the protection design into the projectile.

2012 ◽  
Vol 132 (3) ◽  
pp. 347-356 ◽  
Author(s):  
Yuta Nabata ◽  
Tatsuya Nakazaki ◽  
Tokoku Ogata ◽  
Kiyoshi Ohishi ◽  
Toshimasa Miyazaki ◽  
...  

2015 ◽  
Vol 46 (3) ◽  
pp. 259-287
Author(s):  
Viktor Andreevich Anikin ◽  
Oleg Vladimirovich Animitsa ◽  
Vladimir Mikhailovich Kuvshinov ◽  
Veniamin Aleksandrovich Leontiev
Keyword(s):  

2020 ◽  
Vol 38 (8A) ◽  
pp. 1187-1199
Author(s):  
Qaed M. Ali ◽  
Mohammed M. Ezzalden

BLDC motors are characterized by electronic commutation, which is performed by using an electric three-phase inverter. The direct control system of the BLDC motor consists of double loops; including the inner-loop for current regulating and outer-loop for speed control. The operation of the current controller requires feedback of motor currents; the conventional current controller uses two current sensors on the ac side of the inverter to measure the currents of two phases, while the third current would be accordingly calculated. These two sensors should have the same characteristics, to achieve balanced current measurements. It should be noted that the sensitivity of these sensors changes with time. In the case of one sensor fails, both of them must be replaced. To overcome this problem, it is preferable to use one sensor instead of two. The proposed control system is based on a deadbeat predictive controller, which is used to regulate the DC current of the BLDC motor. Such a controller can be considered as digital controller mode, which has fast response, high precision and can be easily implemented with microprocessor. The proposed control system has been simulated using Matlab software, and the system is tested at a different operating condition such as low speed and high speed.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2018 ◽  
Vol 192 ◽  
pp. 02028
Author(s):  
Hassan Zulkifli Abu ◽  
Ibrahim Aniza ◽  
Mohamad Nor Norazman

Small-scale blast tests were carried out to observe and measure the influence of sandy soil towards explosive blast intensity. The tests were to simulate blast impact imparted by anti-vehicular landmine to a lightweight armoured vehicle (LAV). Time of occurrence of the three phases of detonation phase in soil with respect to upward translation time of the test apparatus were recorded using high-speed video camera. At the same time the target plate acceleration was measured using shock accelerometer. It was observed that target plate deformation took place at early stage of the detonation phase before the apparatus moved vertically upwards. Previous data of acceleration-time history and velocity-time history from air blast detonation were compared. It was observed that effects of soil funnelling on blast wave together with the impact from soil ejecta may have contributed to higher blast intensity that characterized detonation in soil, where detonation in soil demonstrated higher plate velocity compared to what occurred in air blast detonation.


2012 ◽  
Vol 490-495 ◽  
pp. 456-459
Author(s):  
Jun Han ◽  
Rui Li Chang

Open Computer Numerical Control system (Open CNC) based on PC and the Windows operating system has been a major developing direction and a research focus of the current numerical control technology. At present, there have been all kinds of the Open CNC systems with high-speed and precision servo control boards, but they are too expensive. Therefore, developing an economical and practical motion controller is great significant for middle and small numerical control system


2012 ◽  
Vol 580 ◽  
pp. 155-159
Author(s):  
Xiang Ming Wang ◽  
Jin Chao Wang ◽  
Dong Hua Sun

In this paper, the real-time EtherCAT technology is introduced in detail, which including operating principle, communication protocol and the superiority performance of EtherCAT i.e. synchronicity, simultaneousness and high speed. To show how to design a slave system that considering the characteristics of application, the method of developing systems based no EtherCAT technology are proposed. Finally, a data acquisition system based on EtherCAT technology is designed. Application of EtherCAT technology can improve the real-time characteristics of data communication in wind power system.


2011 ◽  
Vol 383-390 ◽  
pp. 79-85
Author(s):  
Dong Yuan ◽  
Xiao Jun Ma ◽  
Wei Wei

Aiming at the problems such as switch impulsion, insurmountability for influence caused by nonlinearity in one tank gun control system which adopts double PID controller to realize the multimode switch control between high speed and low speed movement, the system math model is built up; And then, Model Reference Adaptive Control (MRAC) method based on nonroutine reference model is brought in and the adaptive gun controller is designed. Consequently, the compensation of nonlinearity and multimode control are implemented. Furthermore, the Tracking Differentiator (TD) is affiliated to the front of controller in order to restrain the impulsion caused by mode switch. Finally, the validity of control method in this paper is verified by simulation.


Sign in / Sign up

Export Citation Format

Share Document