scholarly journals Enhancement of Schottky Junction Silicon Solar Cell with CdSe/ZnS Quantum Dots Decorated Metal Nanostructures

2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Ha Trang Nguyen ◽  
Thanh Thao Tran ◽  
Vishwa Bhatt ◽  
Manjeet Kumar ◽  
Jinwon Song ◽  
...  

Recently, in the solar energy society, several key technologies have been reported to meet a grid parity, such as cost-efficient materials, simple processes, and designs. Among them, the assistive plasmonic of metal nanoparticles (MNPs) integrating with the downshifting on luminescent materials attracts much attention. Hereby, Si-based Schottky junction solar cells are fabricated and examined to enhance the performance. CdSe/ZnS quantum dots (QDs) with different gold nanoparticles (Au NPs) sizes were incorporated on a Si light absorbing layer. Due to the light scattering effect from plasmonic resonance, the sole Au NPs layer results in the overall enhancement of Si solar cell’s efficiency in the visible spectrum. However, the back-scattering and high reflectance of Au NPs lead to efficiency loss in the UV region. Therefore, the QDs layer acting as a luminescent downshifter is deployed for further efficiency enhancement. The QDs layer absorbs high-energy photons and re-emits lower energy photons in 528 nm of wavelength. Such a downshift layer can enhance the overall efficiency of Si solar cells due to poor intrinsic spectral response in the UV region. The optical properties of Au NPs and CdSe QDs, along with the electrical properties of solar cells in combination with Au/QD layers, are studied in depth. Moreover, the influence of Au NPs size on the solar cell performance has been investigated. Upon decreasing the diameters of Au NPs, the blueshift of absorbance has been observed, cooperating with QDs, which leads to the improvement of the quantum efficiency in the broadband of the solar spectrum.

Author(s):  
Hisaaki Nishimura ◽  
Takaya Maekawa ◽  
Kazushi Enomoto ◽  
Naoteru Shigekawa ◽  
Tomomi Takagi ◽  
...  

The sensitivity of Si solar cells to the UV portion of the solar spectrum is low, and must be increased to further improve their efficiencies.


1999 ◽  
Vol 557 ◽  
Author(s):  
J. Yang ◽  
S. Guha

AbstractOne of the most effective techniques used to obtain high quality amorphous silicon alloys is the use of hydrogen dilution during film growth. The resultant material exhibits a more ordered microstructure and gives rise to high efficiency solar cells. As the hydrogen dilution increases, however, a threshold is reached, beyond which microcrystallites begin to form rapidly. In this paper, we review some of the interesting features associated with the thin film materials obtained from various hydrogen dilutions. They include the observation of linear-like objects in the TEM micrograph, a shift of the principal Si TO band in the Raman spectrum, a sharp, low temperature peak in the H2 evolution spectrum, a shift of the wagging mode in the IR spectrum, and a narrowing of the Si (111) peak in the X-ray diffraction pattern. These spectroscopic tools have allowed us to optimize deposition conditions to near the threshold of microcrystallinity and obtain desired high quality materials. Incorporation of the improved materials into device configuration has significantly enhanced the solar cell performance. Using a spectral-splitting, triple-junction configuration, the spectral response of a typical high efficiency device spans from below 350 nm to beyond 950 nm with a peak quantum efficiency exceeding 90%; the triple stack generates a photocurrent of 27 mA/cm2. This paper describes the effect of the improved materials on various solar cell structures, including a 13% active-area, stable triple-junction device.


2013 ◽  
Vol 1551 ◽  
pp. 155-161
Author(s):  
Y. F. Makableh ◽  
R. Vasan ◽  
J. C. Sarker ◽  
S. Lee ◽  
M. A. Khan ◽  
...  

ABSTRACTA study on light absorption enhancement of an InAs quantum dots embedded into InxGa1-xAs quantum well with GaAs as a barrier solar cells was carried out. Solar cell devices were fabricated from different structures, which were grown by using molecular beam epitaxy, with the In mole fraction (x) varied between 0 – 25 %. Poly-L-Lysine ligands and ZnO sol-gel was used to modify the surface of the solar cells and act as anti-reflection coatings. The anti-reflection characteristic of the ligands and the sol-gel were investigated by measuring the solar cell characteristics before and after the solar cells surface modifications. The current-voltage characteristics were measured of the fabricated solar cells before and after Poly-L-Lysine and ZnO coatings. A significant enhancement on the order of 40 % of the solar cells performance was observed. This type of enhancement was observed in the power conversion efficiency, spectral response measurements, and external quantum efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
A. B. Kashyout ◽  
Hesham M. A. Soliman ◽  
Marwa Fathy ◽  
E. A. Gomaa ◽  
Ali A. Zidan

CdSe quantum dots have been prepared with different sizes and exploited as inorganic dye to sensitize a wide bandgap TiO2thin films for QDs solar cells. The synthesis is based on the pyrolysis of organometallic reagents by injection into a hot coordinating solvent. This provides temporally discrete nucleation and permits controlled growth of macroscopic quantities of nanocrystallites. XRD, HRTEM, UV-visible, and PL were used to characterize the synthesized quantum dots. The results showed CdSe quantum dots with sizes ranging from 3 nm to 6 nm which enabled the control of the optical properties and consequently the solar cell performance. Solar cell of 0.08% performance under solar irradiation with a light intensity of 100 mW/cm2has been obtained. CdSe/TiO2solar cells without and with using mercaptopropionic acid (MPA) as a linker between CdSe and TiO2particles despite aVocof 428 mV,Jscof 0.184 mAcm-2, FF of 0.57, andηof 0.05% but with linker despite aVocof 543 mV,Jscof 0.318 mAcm-2, FF of 0.48, andηof 0.08%, respectively.


RSC Advances ◽  
2017 ◽  
Vol 7 (34) ◽  
pp. 21221-21225 ◽  
Author(s):  
Yan Chen ◽  
Jing Wang ◽  
Mei Zhang ◽  
Qingguang Zeng

We developed a light conversion material LiBaPO4:Eu2+, Pr3+. It can absorb the UV-Vis phonons of the solar spectrum and emit intense NIR light around 1000 nm, which matches well with the maximum spectral response of Si solar cells.


2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Richard R. King ◽  
Daniel C. Law ◽  
Kenneth M. Edmondson ◽  
Christopher M. Fetzer ◽  
Geoffrey S. Kinsey ◽  
...  

The high efficiency of multijunction concentrator cells has the potential to revolutionize the cost structure of photovoltaic electricity generation. Advances in the design of metamorphic subcells to reduce carrier recombination and increase voltage, wide-band-gap tunnel junctions capable of operating at high concentration, metamorphic buffers to transition from the substrate lattice constant to that of the epitaxial subcells, concentrator cell AR coating and grid design, and integration into 3-junction cells with current-matched subcells under the terrestrial spectrum have resulted in new heights in solar cell performance. A metamorphic Ga0.44In0.56P/Ga0.92In0.08As/ Ge 3-junction solar cell from this research has reached a record 40.7% efficiency at 240 suns, under the standard reporting spectrum for terrestrial concentrator cells (AM1.5 direct, low-AOD, 24.0 W/cm2, 25∘C), and experimental lattice-matched 3-junction cells have now also achieved over 40% efficiency, with 40.1% measured at 135 suns. This metamorphic 3-junction device is the first solar cell to reach over 40% in efficiency, and has the highest solar conversion efficiency for any type of photovoltaic cell developed to date. Solar cells with more junctions offer the potential for still higher efficiencies to be reached. Four-junction cells limited by radiative recombination can reach over 58% in principle, and practical 4-junction cell efficiencies over 46% are possible with the right combination of band gaps, taking into account series resistance and gridline shadowing. Many of the optimum band gaps for maximum energy conversion can be accessed with metamorphic semiconductor materials. The lower current in cells with 4 or more junctions, resulting in lower I2R resistive power loss, is a particularly significant advantage in concentrator PV systems. Prototype 4-junction terrestrial concentrator cells have been grown by metal-organic vapor-phase epitaxy, with preliminary measured efficiency of 35.7% under the AM1.5 direct terrestrial solar spectrum at 256 suns.


2020 ◽  
Vol 2 (7) ◽  
pp. 2950-2957 ◽  
Author(s):  
Sopit Phetsang ◽  
Supeera Nootchanat ◽  
Chutiparn Lertvachirapaiboon ◽  
Ryousuke Ishikawa ◽  
Kazunari Shinbo ◽  
...  

The performance of organic solar cells was improved by the effect of a synergistic gold quantum dot/plasmonic grating system.


2008 ◽  
Vol 1120 ◽  
Author(s):  
Richard N Savage ◽  
Hans Mayer ◽  
Matthew Lewis ◽  
Dan M Marrujo

AbstractSilicon-based photovoltaics typically convert less than 30% of the solar spectrum into usable electric power. This study explores the utilization of CdSe based quantum dots as spectral converters that absorb the under utilized UV portion of the solar spectrum and fluoresce at wavelengths near the band-gap of silicon-based solar cells. A flexible 1 mm thick thin-film structure that contains an array of microfluidic channels is designed and fabricated in polydimethylsiloxane (PDMS) using soft-lithographic techniques. The channels are approximately 85 microns wide by 37 microns tall and are filled with a solution containing the quantum dots. The thin-film structure can easily be attached to the surface of a single-junction solar cell. As a result, solar energy striking the coated solar cell with wavelengths less than 450 nm, which would normally experience low conversion efficiency, are absorbed by the quantum dots which fluoresce at 620nm. The high energy photons are converted to photons near the band-gap which increase the overall conversion efficiency of the solar cell. The quantum dots employed in this study are fabricated with a CdSe core (5.2 nm) and a ZnS outer shell and they exhibit a 25 nm hydrodynamic diameter. The UV-VIS spectral transmission properties of PDMS, along with its refractive index, are determined in order to characterize the spectral conversion efficiency of the thin-film structure. A model is developed to predict the optimum path length and concentration of quantum dots required to improve the power output of an amorphous silicon solar cell by 10%.


2021 ◽  
Author(s):  
Geoffrey S Kinsey ◽  
Matthew Boyd ◽  
Marília Braga ◽  
Nicholas C. Riedel-Lyngskær ◽  
Raul R. Cordero ◽  
...  

In comparisons of solar photovoltaic performance, variation in the spectrum of sunlight is infrequently considered. A single spectrum, AM1.5, is used as the standard condition both for comparison of competing solar cell technologies and evaluation of energy generation from solar power plants. The addition of solar spectrum variation provides a more relevant basis for comparison and reduces prediction error and its financial impacts. Ground-level measurements collected worldwide have been pooled to provide an extensive – though by no means comprehensive – sampling of the global variation in spectral irradiance. Applied to nine solar cell types, the resulting variation in solar cell performance indicates that a single spectrum is not sufficient for comparison of cells with different spectral responses. The performance of different cell types diverges from that under standard conditions. Increases in the degree of sun tracking decrease efficiency for cells with a narrow spectral response. Cells with two or more junctions tend to have efficiencies below that obtained under AM1.5. Of the nine cell types, silicon exhibits the least spectral sensitivity: the median relative variation at a single site is 3%.


2016 ◽  
Vol 16 (4) ◽  
pp. 3904-3908 ◽  
Author(s):  
Jie Yi ◽  
Yanfang Duan ◽  
Chunxia Liu ◽  
Shaohong Gao ◽  
Xueting Han ◽  
...  

Lead sulfide (PbS) quantum dots (QDs) have been synthesized via successive ionic layer adsorption and reaction (SILAR) on a titanium dioxide (TiO2 nanoporous film for the fabrication of quantum dot-sensitized solar cells (QDSCs). The reaction is environmental friendly and energy saving. The green synthesized PbS QDs match the maximum remittance region of the solar spectrum and are suitable as sensitizers for TiO2 electrodes for cell devices application. PbS QDs were adsorbed in different adsorption layers in order to improve the solar cell performance. The optical properties of PbS sensitized TiO2 films were studied by scanning electron microscopy and UV-Vis absorbance spectroscopy. The photovoltaic characteristics of the PbS QDSCs were analyzed by I–V characteristics and electrochemical impedance spectroscopy. As a result, the light harvesting was enhanced with increasing SILAR adsorption layers. The maximum photovoltaic conversion efficiency of the PbS QDSCs (3.14%) was obtained at the 12 adsorption layers with the highest short circuit current density and lowest charge transfer resistance.


Sign in / Sign up

Export Citation Format

Share Document