scholarly journals Assessing the Relevance of Opinions in Uncertainty and Info-Incompleteness Conditions

2021 ◽  
Vol 12 (1) ◽  
pp. 194
Author(s):  
Gerardo Iovane ◽  
Riccardo Emanuele Landi ◽  
Antonio Rapuano ◽  
Riccardo Amatore

Researchers are interested in defining decision support systems that can act in contexts characterized by uncertainty and info-incompleteness. The present study proposes a learning model for assessing the relevance of probability, plausibility, credibility, and possibility opinions in the conditions above. The solution consists of an Artificial Neural Network acquiring input features related to the considered set of opinions and other relevant attributes. The model provides the weights for minimizing the error between the expected outcome and the ground truth concerning a given phenomenon of interest. A custom loss function was defined to minimize the Mean Best Price Error (MBPE), while the evaluation of football players’ was chosen as a case study for testing the model. A custom dataset was constructed by scraping the Transfermarkt, Football Manager, and FIFA21 information sources and by computing a sentiment score through BERT, obtaining a total of 398 occurrences, of which 85% were employed for training the proposed model. The results show that the probability opinion represents the best choice in conditions of info-completeness, predicting the best price with 0.86 MBPE (0.61% of normalized error), while an arbitrary set composed of plausibility, credibility, and possibility opinions was considered for deciding successfully in info-incompleteness, achieving a confidence score of 2.47±0.188 MBPE (1.89±0.15% of normalized error). The proposed solution provided high performance in predicting the transfer cost of a football player in conditions of both info-completeness and info-incompleteness, revealing the significance of extending the feature space to opinions concerning the quantity to predict. Furthermore, the assumptions of the theoretical background were confirmed, as well as the observations found in the state of the art regarding football player evaluation.

Author(s):  
Ruyi Ji ◽  
Zeyu Liu ◽  
Libo Zhang ◽  
Jianwei Liu ◽  
Xin Zuo ◽  
...  

Weakly supervised object detection (WSOD), aiming to detect objects with only image-level annotations, has become one of the research hotspots over the past few years. Recently, much effort has been devoted to WSOD for the simple yet effective architecture and remarkable improvements have been achieved. Existing approaches using multiple-instance learning usually pay more attention to the proposals individually, ignoring relation information between proposals. Besides, to obtain pseudo-ground-truth boxes for WSOD, MIL-based methods tend to select the region with the highest confidence score and regard those with small overlap as background category, which leads to mislabeled instances. As a result, these methods suffer from mislabeling instances and lacking relations between proposals, degrading the performance of WSOD. To tackle these issues, this article introduces a multi-peak graph-based model for WSOD. Specifically, we use the instance graph to model the relations between proposals, which reinforces multiple-instance learning process. In addition, a multi-peak discovery strategy is designed to avert mislabeling instances. The proposed model is trained by stochastic gradients decent optimizer using back-propagation in an end-to-end manner. Extensive quantitative and qualitative evaluations on two publicly challenging benchmarks, PASCAL VOC 2007 and PASCAL VOC 2012, demonstrate the superiority and effectiveness of the proposed approach.


Author(s):  
A. V. Ponomarev

Introduction: Large-scale human-computer systems involving people of various skills and motivation into the information processing process are currently used in a wide spectrum of applications. An acute problem in such systems is assessing the expected quality of each contributor; for example, in order to penalize incompetent or inaccurate ones and to promote diligent ones.Purpose: To develop a method of assessing the expected contributor’s quality in community tagging systems. This method should only use generally unreliable and incomplete information provided by contributors (with ground truth tags unknown).Results:A mathematical model is proposed for community image tagging (including the model of a contributor), along with a method of assessing the expected contributor’s quality. The method is based on comparing tag sets provided by different contributors for the same images, being a modification of pairwise comparison method with preference relation replaced by a special domination characteristic. Expected contributors’ quality is evaluated as a positive eigenvector of a pairwise domination characteristic matrix. Community tagging simulation has confirmed that the proposed method allows you to adequately estimate the expected quality of community tagging system contributors (provided that the contributors' behavior fits the proposed model).Practical relevance: The obtained results can be used in the development of systems based on coordinated efforts of community (primarily, community tagging systems). 


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 567
Author(s):  
Donghun Yang ◽  
Kien Mai Mai Ngoc ◽  
Iksoo Shin ◽  
Kyong-Ha Lee ◽  
Myunggwon Hwang

To design an efficient deep learning model that can be used in the real-world, it is important to detect out-of-distribution (OOD) data well. Various studies have been conducted to solve the OOD problem. The current state-of-the-art approach uses a confidence score based on the Mahalanobis distance in a feature space. Although it outperformed the previous approaches, the results were sensitive to the quality of the trained model and the dataset complexity. Herein, we propose a novel OOD detection method that can train more efficient feature space for OOD detection. The proposed method uses an ensemble of the features trained using the softmax-based classifier and the network based on distance metric learning (DML). Through the complementary interaction of these two networks, the trained feature space has a more clumped distribution and can fit well on the Gaussian distribution by class. Therefore, OOD data can be efficiently detected by setting a threshold in the trained feature space. To evaluate the proposed method, we applied our method to various combinations of image datasets. The results show that the overall performance of the proposed approach is superior to those of other methods, including the state-of-the-art approach, on any combination of datasets.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 651
Author(s):  
Shengyi Zhao ◽  
Yun Peng ◽  
Jizhan Liu ◽  
Shuo Wu

Crop disease diagnosis is of great significance to crop yield and agricultural production. Deep learning methods have become the main research direction to solve the diagnosis of crop diseases. This paper proposed a deep convolutional neural network that integrates an attention mechanism, which can better adapt to the diagnosis of a variety of tomato leaf diseases. The network structure mainly includes residual blocks and attention extraction modules. The model can accurately extract complex features of various diseases. Extensive comparative experiment results show that the proposed model achieves the average identification accuracy of 96.81% on the tomato leaf diseases dataset. It proves that the model has significant advantages in terms of network complexity and real-time performance compared with other models. Moreover, through the model comparison experiment on the grape leaf diseases public dataset, the proposed model also achieves better results, and the average identification accuracy of 99.24%. It is certified that add the attention module can more accurately extract the complex features of a variety of diseases and has fewer parameters. The proposed model provides a high-performance solution for crop diagnosis under the real agricultural environment.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Shuyou Yu ◽  
Matthias Hirche ◽  
Yanjun Huang ◽  
Hong Chen ◽  
Frank Allgöwer

AbstractThis paper reviews model predictive control (MPC) and its wide applications to both single and multiple autonomous ground vehicles (AGVs). On one hand, MPC is a well-established optimal control method, which uses the predicted future information to optimize the control actions while explicitly considering constraints. On the other hand, AGVs are able to make forecasts and adapt their decisions in uncertain environments. Therefore, because of the nature of MPC and the requirements of AGVs, it is intuitive to apply MPC algorithms to AGVs. AGVs are interesting not only for considering them alone, which requires centralized control approaches, but also as groups of AGVs that interact and communicate with each other and have their own controller onboard. This calls for distributed control solutions. First, a short introduction into the basic theoretical background of centralized and distributed MPC is given. Then, it comprehensively reviews MPC applications for both single and multiple AGVs. Finally, the paper highlights existing issues and future research directions, which will promote the development of MPC schemes with high performance in AGVs.


2008 ◽  
Vol 26 (1) ◽  
pp. 75-94 ◽  
Author(s):  
Emilios Cambouropoulos

LISTENERS ARE THOUGHT TO BE CAPABLE of perceiving multiple voices in music. This paper presents different views of what 'voice' means and how the problem of voice separation can be systematically described, with a view to understanding the problem better and developing a systematic description of the cognitive task of segregating voices in music. Well-established perceptual principles of auditory streaming are examined and then tailored to the more specific problem of voice separation in timbrally undifferentiated music. Adopting a perceptual view of musical voice, a computational prototype is developed that splits a musical score (symbolic musical data) into different voices. A single 'voice' may consist of one or more synchronous notes that are perceived as belonging to the same auditory stream. The proposed model is tested against a small dataset that acts as ground truth. The results support the theoretical viewpoint adopted in the paper.


Author(s):  
Mohamed Estai ◽  
Marc Tennant ◽  
Dieter Gebauer ◽  
Andrew Brostek ◽  
Janardhan Vignarajan ◽  
...  

Objective: This study aimed to evaluate an automated detection system to detect and classify permanent teeth on orthopantomogram (OPG) images using convolutional neural networks (CNNs). Methods: In total, 591 digital OPGs were collected from patients older than 18 years. Three qualified dentists performed individual teeth labelling on images to generate the ground truth annotations. A three-step procedure, relying upon CNNs, was proposed for automated detection and classification of teeth. Firstly, U-Net, a type of CNN, performed preliminary segmentation of tooth regions or detecting regions of interest (ROIs) on panoramic images. Secondly, the Faster R-CNN, an advanced object detection architecture, identified each tooth within the ROI determined by the U-Net. Thirdly, VGG-16 architecture classified each tooth into 32 categories, and a tooth number was assigned. A total of 17,135 teeth cropped from 591 radiographs were used to train and validate the tooth detection and tooth numbering modules. 90% of OPG images were used for training, and the remaining 10% were used for validation. 10-folds cross-validation was performed for measuring the performance. The intersection over union (IoU), F1 score, precision, and recall (i.e. sensitivity) were used as metrics to evaluate the performance of resultant CNNs. Results: The ROI detection module had an IoU of 0.70. The tooth detection module achieved a recall of 0.99 and a precision of 0.99. The tooth numbering module had a recall, precision and F1 score of 0.98. Conclusion: The resultant automated method achieved high performance for automated tooth detection and numbering from OPG images. Deep learning can be helpful in the automatic filing of dental charts in general dentistry and forensic medicine.


Author(s):  
Tuan A. Pham ◽  
Melis Sutman

The prediction of shear strength for unsaturated soils remains to be a significant challenge due to their complex multi-phase nature. In this paper, a review of prior experimental studies is firstly carried out to present important pieces of evidence, limitations, and some design considerations. Next, an overview of the existing shear strength equations is summarized with a brief discussion. Then, a micromechanical model with stress equilibrium conditions and multi-phase interaction considerations is presented to provide a new equation for predicting the shear strength of unsaturated soils. The validity of the proposed model is examined for several published shear strength data of different soil types. It is observed that the shear strength predicted by the analytical model is in good agreement with the experimental data, and get high performance compared to the existing models. The evaluation of the outcomes with two criteria, using average relative error and the normalized sum of squared error, proved the effectiveness and validity of the proposed equation. Using the proposed equation, the nonlinear relationship between shear strength, saturation degree, volumetric water content, and matric suction are observed.


Author(s):  
Woosub Jung ◽  
Amanda Watson ◽  
Scott Kuehn ◽  
Erik Korem ◽  
Ken Koltermann ◽  
...  

For the past several decades, machine learning has played an important role in sports science with regard to player performance and result prediction. However, it is still challenging to quantify team-level game performance because there is no strong ground truth. Thus, a team cannot receive feedback in a standardized way. The aim of this study was twofold. First, we designed a metric called LAX-Score to quantify a collegiate lacrosse team's athletic performance. Next, we explored the relationship between our proposed metric and practice sensing features for performance enhancement. To derive the metric, we utilized feature selection and weighted regression. Then, the proposed metric was statistically validated on over 700 games from the last three seasons of NCAA Division I women's lacrosse. We also explored our biometric sensing dataset obtained from a collegiate team's athletes over the course of a season. We then identified the practice features that are most correlated with high-performance games. Our results indicate that LAX-Score provides insight into athletic performance beyond wins and losses. Moreover, though COVID-19 has stalled implementation, the collegiate team studied applied our feature outcomes to their practices, and the initial results look promising with regard to better performance.


Sign in / Sign up

Export Citation Format

Share Document