scholarly journals Fuel Flowrate Control for Aeroengine and Fuel Thermal Management for Airborne System of Aircraft—An Overview

2021 ◽  
Vol 12 (1) ◽  
pp. 279
Author(s):  
Dong Li ◽  
Jie Hang ◽  
Yunhua Li ◽  
Sujun Dong

Fuel flowrate control system and fuel thermal management are very important for aeroengine and the overall aircraft, and it has been researched for several decades. This survey paper makes a comprehensive and systematic overview on the exiting fuel flowrate regulation methods, thermal load of fuel metering units, fuel-based thermal management, and the fuel tank’s thermal management topology network with drain and recirculation. This paper firstly reviews the mechanism, technical advantages, and technical challenges of the fuel metering unit with flowrate control valve and constant pressure difference valve compensator, flowrate control valve and variable displacement pump-based pressure difference compensator, and motor-based flowrate regulation. Then, the technical characteristics of above fuel flowrate control methods related to thermal management are discussed and compared. Meanwhile, the behaviors of recirculated fuel flow within single tank system and dual tank system are explored. Thirdly, the paper discusses the future directions of fuel flowrate control and thermal management. The survey is significant to the fuel flowrate control and fuel thermal management of the aircraft.

Author(s):  
Mark A. Batdorff ◽  
John H. Lumkes

Hydraulic pumps can be fixed or variable displacement. Fixed displacement pumps are typically smaller, lighter, less expensive, and can be of any design (gear, vane, axial piston, radial piston, ect.)[1]. Variable displacement pumps are often axial piston with an adjustable swash plate. A virtually variable displacement pump (VVDP) is a fixed displacement pump combined with a fast switching control valve that performs the same function as a variable displacement pump. This is done by always pumping full flow, but using the control valve to divert only a certain percentage of flow to the system, and the rest back to tank. A VVDP has several advantages over a traditional variable swash axial piston pump. First, the pump can be of any design, not just axial piston. Second, the flow control bandwidth can be much faster because it is only limited by the bandwidth of the fast switching control valve and system accumulator, not the bandwidth of a swash plate. Third, a VVDP pump can be more efficient because it can operate at its optimum pressure and flow setting. On the downside a VVDP will require a high speed valve. There are also added switching power losses due to constant metering over valves, compressing and decompressing hydraulic oil, and metering during transition between pumping to system and tank. This paper concentrates on modeling these three switching losses.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Zheng Yan

To provide a precise model of dynamic components in the constant pressure pump, and to improve the accuracy of dynamic calculation of the constant-pressure hydraulic system in its design stage, the research undertook mapping on a particular constant pressure pump and determined its basic structural parameters. Then, with the AMESim software, the research adopted separate structures from the level of basic components to establish the model of single-piston pump, the model of variable displacement pump, and the model of adjustable mechanism for the swashplate, respectively. The three models were combined with the constant-pressure variable displacement pump before it was encapsulated in a super component. By controlling the flow discharge of the constant pressure pump, and by switching on and off the constant pressure valve with the internal and long-distance pressure control, the research undertook the simulative test and the corresponding experimental test on the characteristics of pressure response of the constant pressure pump. The results of both tests agreed well with each other. Thus, it verifies the precision of the established constant pressure pump model in performing accurately in response design and analytical calculation.


Author(s):  
Samir Kumar Hati ◽  
Nimai Pada Mandal ◽  
Dipankar Sanyal

Losses in control valves drag down the average overall efficiency of electrohydraulic systems to only about 22% from nearly 75% for standard pump-motor sets. For achieving higher energy efficiency in slower systems, direct pump control replacing fast-response valve control is being put in place through variable-speed motors. Despite the promise of a quicker response, displacement control of pumps has seen slower progress for exhibiting undesired oscillation with respect to the demand in some situations. Hence, a mechatronic simulation-based design is taken up here for a variable-displacement pump–controlled system directly feeding a double-acting single-rod cylinder. The most significant innovation centers on designing an axial-piston pump with an electrohydraulic compensator for bi-directional swashing. An accumulator is conceived to handle the flow difference in the two sides across the load piston. A solenoid-driven sequence valve with P control is proposed for charging the accumulator along with setting its initial gas pressure by a feedforward design. Simple proportional–integral–derivative control of the compensator valve is considered in this exploratory study. Appropriate setting of the gains and critical sizing of the compensator has been obtained through a detailed parametric study aiming low integral absolute error. A notable finding of the simulation is the achievement of the concurrent minimum integral absolute error of 3.8 mm s and the maximum energy saving of 516 kJ with respect to a fixed-displacement pump. This is predicted for the combination of the circumferential port width of 2 mm for the compensator valve and the radial clearance of 40 µm between each compensator cylinder and the paired piston.


2021 ◽  
Author(s):  
Bo Wang ◽  
Yunwei Li ◽  
Long Quan ◽  
Lianpeng Xia

Abstract There are the problems in the traditional pressure-compensation flow-control valve, such as low flow control accuracy, small flow control difficulty, and limited flow range. For this, a method of continuous control pressure drop Δprated (i.e. the pressure drop across the main throttling orifice) to control flow-control valve flow is proposed. The precise control of small flow is realized by reducing the pressure drop Δprated and the flow range is amplified by increasing pressure drop Δprated. At the same time, it can also compensate the flow force to improve the flow control accuracy by regulating the pressure drop Δprated. In the research, the flow-control valve with controllable pressure compensation capability (FVCP) was designed firstly and theoretically analyzed. Then the sub-model model of PPRV and the joint simulation model of the FVCP were established and verified through experiments. Finally, the continuous control characteristics of pressure drop Δprated, the flow characteristics, and flow force compensation were studied. The research results demonstrate that, compared with the traditional flow-control valve, the designed FVCP can adjust the compensation pressure difference in the range of 0∼3.4 MPa in real-time. And the flow rate can be altered within the range of 44%∼136% of the rated flow. By adjusting the compensation pressure difference to compensate the flow force, the flow control accuracy of the multi-way valve is improved, and the flow force compensation effect is obvious.


2002 ◽  
Vol 124 (4) ◽  
pp. 613-616 ◽  
Author(s):  
X. Zhang ◽  
S. S. Nair ◽  
N. D. Manring

A robust adaptive pressure control strategy is proposed for a novel indexing variable-displacement pump. In the proposed approach, parametric uncertainties and unmodeled dynamics are identified to the extent possible using a model free learning network and used to decouple the dynamics using physical insights derived from careful reduced order modeling. The swash plate motion control is then carefully designed to provide the desired pressure response characteristics showing improved performance with learning. The proposed control framework and designs are validated using a detailed nonlinear simulation model.


1983 ◽  
Vol 105 (3) ◽  
pp. 468-470 ◽  
Author(s):  
T. E. Shoup ◽  
D. Chi

This paper presents a theoretical analysis and a design technique for the use of a special type of adjustable spatial slider crank mechanism to replace the swash plate device commonly used as a variable displacement pump or compressor. This paper is an extension of a previous research effort utilizing the RSSP mechanism [7] and considers the influence of geometric proportions of a device on stroke size, velocity fluctuation, and force transmission effectiveness. The device is shown to have significant kinematic advantages over the traditional form of the swash plate mechanism. Design curves are presented and an example application is provided.


1993 ◽  
Author(s):  
William O. Statler

A method of mass flow control of fuel gas to a gas turbine has been developed and applied in control retrofits to existing gas turbines. Unlike other gas flow control systems in use on gas turbines this system actually measures the mass flow going into the turbine combustion system and uses this value as the feedback in a control loop to modulate a single throttling control valve. The system utilizes a common venturi flow element to develop a differential pressure which, along with inlet pressure and temperature, is used to compute the mass flow. Locating this flow element downstream of the control valve where the pressure is low at low flows reduces the usual problem of the wide range of delta-pressure (proportional to the square of the mass flow) to a workable level. This extends the range of this common type of flow measurement system enough that it becomes practical to apply it to the gas fuel flow control loop of a gas turbine.


Sign in / Sign up

Export Citation Format

Share Document