scholarly journals A Methodology for Exploiting Smart Prosumers’ Flexibility in a Bottom-Up Aggregation Process

2022 ◽  
Vol 12 (1) ◽  
pp. 430
Author(s):  
Diego Arnone ◽  
Michele Cacioppo ◽  
Mariano Giuseppe Ippolito ◽  
Marzia Mammina ◽  
Liliana Mineo ◽  
...  

The electrical power system is evolving in a way that requires new measures for ensuring its secure and reliable operation. Demand-side aggregation represents one of the more interesting ways to provide ancillary services by the coordinated management of a multitude of different distributed resources. In this framework, aggregators play the main role in ensuring the effectiveness of the coordinated action of the distributed resources, usually becoming mediators in the relation between distribution system operators and smart prosumers. The research project DEMAND recently introduced a new concept in demand-side aggregation by proposing a scheme without a central aggregator where prosumers can share and combine their flexibility with a collaboration–competition mechanism in a platform called Virtual Aggregation Environment (VAE). This paper, after a brief introduction to the DEMAND project, presents the algorithm for the day-ahead estimation of prosumers’ flexibility and the cooperative–competitive algorithm for the bottom-up aggregation. The first algorithm evaluates various couples of power variation and desired remuneration to be sent to the VAE for further elaborations and, for showing its potentiality, is applied to two different case studies: a passive user with only controllable loads and prosumers with controllable loads, photovoltaics and a storage system. The aggregation algorithm is instead discussed in detail, and its performance is evaluated for different population sizes.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2699
Author(s):  
Marceli N. Gonçalves ◽  
Marcelo M. Werneck

Optical Current Transformers (OCTs) and Optical Voltage Transformers (OVTs) are an alternative to the conventional transformers for protection and metering purposes with a much smaller footprint and weight. Their advantages were widely discussed in scientific and technical literature and commercial applications based on the well-known Faraday and Pockels effect. However, the literature is still scarce in studies evaluating the use of optical transformers for power quality purposes, an important issue of power system designed to analyze the various phenomena that cause power quality disturbances. In this paper, we constructed a temperature-independent prototype of an optical voltage transformer based on fiber Bragg grating (FBG) and piezoelectric ceramics (PZT), adequate to be used in field surveys at 13.8 kV distribution lines. The OVT was tested under several disturbances defined in IEEE standards that can occur in the electrical power system, especially short-duration voltage variations such as SAG, SWELL, and INTERRUPTION. The results demonstrated that the proposed OVT presents a dynamic response capable of satisfactorily measuring such disturbances and that it can be used as a power quality monitor for a 13.8 kV distribution system. Test on the proposed system concluded that it was capable to reproduce up to the 41st harmonic without significative distortion and impulsive surges up to 2.5 kHz. As an advantage, when compared with conventional systems to monitor power quality, the prototype can be remote-monitored, and therefore, be installed at strategic locations on distribution lines to be monitored kilometers away, without the need to be electrically powered.


Author(s):  
Pratul Arvind ◽  
Rudra prakash Maheswari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. A Fuzzy c-mean (FCM) and statistical based approach has been used. Samples are transformed as clusters by use of FCM and fed to Expectation- Maximization (EM) algorithm for classifying and locating faults in an unbalanced distribution system. Further, it is to be kept in mind that the combination has not been used for the above purpose as per the literature available till date.


2013 ◽  
Vol 791-793 ◽  
pp. 1889-1891
Author(s):  
Yan Li Fan ◽  
Qing En Li

The low-voltage distribution system is the key component of the electrical power system. Some analysis and research of the low-voltage distribution system is carried out in this paper, which provides some scientific basis to design the low-voltage distribution system. Firstly, the summarize of low-voltage distribution system is taken. The influence to productions and livings of low-voltage distribution system is introduced. Secondly, the mode of connection and design philosophy of low-voltage distribution system is studied in detail, especially the high-rise buildings low-voltage distribution system is concluded and summarized.


Author(s):  
Ashutosh Srivastava ◽  
Amarjeet Singh

Harmonics in the power system is not new issue. This phenomenon has been introduced by technocrat throughout in the history of electrical power system. Maintaining the power quality in a power system is an essential assignment due to increase in wide variety of non-linear loads. The current drawn by such non linear loads are non-sinusoidal and therefore contains harmonics. Therefore, it becomes necessary to compensate these unwanted harmonics for better performance of the system. In this paper, a review of compensations of harmonics in distribution system has been explained.


TEM Journal ◽  
2020 ◽  
pp. 837-843
Author(s):  
Ihsan Mizher Baht ◽  
Petre-Marian Nicolae ◽  
Nameer Bahat

To change the electrical power system from conventional system or existing system to micro grid one needs to check the performance of this system and analyze all parameters. Actually the power grid consists of three essentials parts that are generation, transmutation line and distributions system. Among all parts feeders, transformers and some of electronics parts are to improve the voltage drop or decrease the active power losses and interfaces between two systems. The main advantage of the micro grid is integration of the renewable energy recourses into the power grid through transmutation line or distribution system, but before integration one needs to check and evaluate all parameters of the system (cable, transformers, load flow, losses, etc.). and find out how to improve them . This paper consists of three parts: the first part is introduction about important parameters in the power grid, the Second part analyzes system from IEC standers by using MATLAB software and discuss on the result of these systems. as well as it involves an idea of how to improve it by using the Newton Raphson method. The third part is about power quality analysis and effect of the harmonics on the current and voltage wave form.


Author(s):  
P. V. V Satyanarayana ◽  
P. V. Ramana Rao

Conventional methodology for electrical power generation is vulnerable due to environmental limitations and the availability of fuel. Distributed generation, offering virtuous benefits to the market partakers, is trending in electrical power system in modern era. This paper presents the distributed generation integration to grid with active power injection control. Distributed generation source delivers DC power which is processed through square wave inverter. Inverter circuit is controlled using a simple control technique to match grid code. Fixing the current reference and varying the same, analysis is carried out for grid integration scheme of distributed generation injecting active power to grid. Simulation work is carried out and results are shown using MATLAB/SIMULINK software.


2019 ◽  
Vol 8 (3) ◽  
pp. 2392-2398

The prime motto of the electrical power system is to provide the good and high quality power to the consumers. As the life in the society is expanding hugely, hence the need of the electrical power is additionally expanding suggestively. In this manner expanding the power generation as well as beating the significant issues in the electrical distribution system has turned into a test. The strange conditions can't be normal however when happened; the recuperation ought to be made as quickly as time permits. In this work, a modern artificial intelligence based algorithm is implemented for the reconfiguration of an electrical radial distribution network. This algorithm helps to bring down the active power loss and intensify the voltage profile of the network. This paper has proposed a nature-based guided metaheuristic Whale Optimization Algorithm (WOA). WOA is motivated by the smart foraging approach of the humpback whales. To ratify the efficiency of the proposed approach, WOA is successfully simulated on IEEE standard 69 bus and 119 bus system.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3110
Author(s):  
Konstantinos V. Blazakis ◽  
Theodoros N. Kapetanakis ◽  
George S. Stavrakakis

Electric power grids are a crucial infrastructure for the proper operation of any country and must be preserved from various threats. Detection of illegal electricity power consumption is a crucial issue for distribution system operators (DSOs). Minimizing non-technical losses is a challenging task for the smooth operation of electrical power system in order to increase electricity provider’s and nation’s revenue and to enhance the reliability of electrical power grid. The widespread popularity of smart meters enables a large volume of electricity consumption data to be collected and new artificial intelligence technologies could be applied to take advantage of these data to solve the problem of power theft more efficiently. In this study, a robust artificial intelligence algorithm adaptive neuro fuzzy inference system (ANFIS)—with many applications in many various areas—is presented in brief and applied to achieve more effective detection of electric power theft. To the best of our knowledge, there are no studies yet that involve the application of ANFIS for the detection of power theft. The proposed technique is shown that if applied properly it could achieve very high success rates in various cases of fraudulent activities originating from unauthorized energy usage.


“The increased penetration of Distributed Energy Resources (DER) is inspiring the entire design of conventional electrical power system. “A Microgrid (MG) includes distributed generation, loads, energy storage, and a control system that is competent of working in grid-connected mode and/or islanded mode. Power quality (PQ) problems are one of the major technical challenges in MG power system. To get better PQ of energy supply, it is essential to analyze the harmonics distortion of the system. Moreover, harmonic distortion in a MG networks has significantly reduced PQ, which affects the stability of the system. In order to diminish the harmonics, shunt active power filter (SAPF) has been extensively useful and it is verified to be the best solution to current harmonics. The present paper proposes the mitigation of harmonics of a MG system using shunt active power filter (SAPF). However, the SAPF is employed for reimbursing the harmonics concurrently in the distribution system. The proposed model is developed in MATLAB/Simulink and the result obtained validates the superiority of proposed technique over others in terms of harmonics elimination.”


Sign in / Sign up

Export Citation Format

Share Document