scholarly journals Factors Influencing Changes of the Initial Stable Water Isotopes Composition in the Seasonal Snowpack of the South of Western Siberia, Russia

2022 ◽  
Vol 12 (2) ◽  
pp. 625
Author(s):  
Tatyana Papina ◽  
Alla Eirikh ◽  
Tatiana Noskova

Stable water isotopes in snowpack and snowfalls are widely used for understanding hydrological processes occurring in the seasonally snow-covered territories. The present study examines the main factors influencing changes of the initial stable water isotopes composition in the seasonal snow cover of the south of Western Siberia. Studies of the isotopic composition of snow precipitation and snow cover, as well as experiments with them, were carried out during two cold seasons of 2019–2021, and laser spectroscopy PICARRO L2130-i (WS-CRDS) was used for the determination of water isotope composition (δ18O and δD). The main changes in the isotopic composition of the snow cover layers in the studied region are associated with the existence of a vertical temperature gradient between the layers and with the penetration of soil moisture into the bottom layers in the absence of soil freezing. During the winter period, the sublimation from the top layer of snow is observed only at the moments of a sharp increase in the daily air temperature. At the end of winter, the contrast between day and night air temperatures determines the direction of the shift in the isotopic composition of the top layer of snow relative to the initial snow precipitation.

2013 ◽  
Vol 17 (7) ◽  
pp. 2657-2668 ◽  
Author(s):  
N. Dietermann ◽  
M. Weiler

<p><strong>Abstract.</strong> The aim of this study was to analyse and predict the mean stable water isotopic composition of the snow cover at specific geographic locations and altitudes. In addition, the dependence of the isotopic composition of the entire snow cover on altitude was analysed. Snow in four Swiss catchments was sampled at the end of the accumulation period in April 2010 and a second time during snowmelt in May 2010 and analysed for stable isotope composition of <sup>2</sup>H and <sup>18</sup>O. The sampling was conducted at both south-facing and north-facing slopes at elevation differences of 100 m, for a total altitude difference of approximately 1000 m. The observed variability of isotopic composition of the snow cover was analysed with stepwise multiple linear regression models. The analysis indicated that there is only a limited altitude effect on the isotopic composition when considering all samples. This is due to the high variability of the isotopic composition of the precipitation during the winter months and, in particular in the case of south-facing slopes, an enrichment of heavy isotopes due to intermittent melting processes. This enrichment effect could clearly be observed in the samples which were taken later in the year. A small altitudinal gradient of the isotopic composition could only be observed at some north-facing slopes. However, the dependence of snow depth and the day of the year were significant predictor variables in all models. This study indicates the necessity to further study the variability of water isotopes in the snow cover to increase prediction for isotopic composition of snowmelt and hence increase model performance of residence time models for alpine areas in order to better understand the accumulation processes and the sources of water in the snow cover of high mountains.</p>


2019 ◽  
Vol 98 ◽  
pp. 07031
Author(s):  
Arny E. Sveinbjörnsdóttir ◽  
Andri Stefánsson ◽  
Jan Heinemeier

Stable water isotopes of oxygen and hydrogen have been studied in Icelandic natural waters since 1960 for hydrological and geothermal research. All the waters are of meteoric and seawater origin. The measured range in δD and δ18O is large -131 to +3.3‰ and -20.8 to +2.3‰ respectively. Some of the waters are more depleted than any present-day precipitation suggesting a pre-Holocene component in the groundwater. Carbon isotopes of streams, rivers, soil and groundwater have been studied since 1990 in order to evaluate the carbon sources and reactions that possibly influence the carbon systematics of the water. Results show large range of values, for δ13CDIC -27.4 to +4.5‰ and for 14CDIC +0.6 to +118 pMC. Apart from atmospheric, organic and rock leaching, input of gas at depth with similar isotopic composition as the pre-erupted melt of the upper mantle and lower crust beneath Iceland have been identified as sources for carbon in the deeper groundwater.


2017 ◽  
Vol 11 (4) ◽  
pp. 1733-1743 ◽  
Author(s):  
Pirmin Philipp Ebner ◽  
Hans Christian Steen-Larsen ◽  
Barbara Stenni ◽  
Martin Schneebeli ◽  
Aldo Steinfeld

Abstract. Stable water isotopes (δ18O) obtained from snow and ice samples of polar regions are used to reconstruct past climate variability, but heat and mass transport processes can affect the isotopic composition. Here we present an experimental study on the effect of airflow on the snow isotopic composition through a snow pack in controlled laboratory conditions. The influence of isothermal and controlled temperature gradient conditions on the δ18O content in the snow and interstitial water vapour is elucidated. The observed disequilibrium between snow and vapour isotopes led to the exchange of isotopes between snow and vapour under non-equilibrium processes, significantly changing the δ18O content of the snow. The type of metamorphism of the snow had a significant influence on this process. These findings are pertinent to the interpretation of the records of stable isotopes of water from ice cores. These laboratory measurements suggest that a highly resolved climate history is relevant for the interpretation of the snow isotopic composition in the field.


2017 ◽  
Author(s):  
Pirmin P. Ebner ◽  
Hans Christian Steen-Larsen ◽  
Barbara Stenni ◽  
Martin Schneebeli ◽  
Aldo Steinfeld

Abstract. Stable water isotopes (δ18O) obtained from snow and ice samples of polar regions are used to reconstruct past climate variability, but heat and mass transport processes can affect the isotopic composition. Here we present an experimental study on the effect on the snow isotopic composition by airflow through a snow pack in controlled laboratory conditions. The influence of isothermal and controlled temperature gradient conditions on the δ18O content in the snow and interstitial water vapor is elucidated. The observed disequilibrium between snow and vapor isotopes led to exchange of isotopes between snow and vapor under non-equilibrium processes, significantly changing the δ18O content of the snow. The type of metamorphism of the snow had a significant influence on this process. These findings are pertinent to the interpretation of the records of stable isotopes of water from ice cores. These laboratory measurements suggest that a highly resolved history is relevant for the interpretation of the snow isotopic composition in the field.


2017 ◽  
Vol 10 (8) ◽  
pp. 3125-3144 ◽  
Author(s):  
Rike Völpel ◽  
André Paul ◽  
Annegret Krandick ◽  
Stefan Mulitza ◽  
Michael Schulz

Abstract. We present the first results of the implementation of stable water isotopes in the Massachusetts Institute of Technology general circulation model (MITgcm). The model is forced with the isotopic content of precipitation and water vapor from an atmospheric general circulation model (NCAR IsoCAM), while the fractionation during evaporation is treated explicitly in the MITgcm. Results of the equilibrium simulation under pre-industrial conditions are compared to observational data and measurements of plankton tow records (the oxygen isotopic composition of planktic foraminiferal calcite). The broad patterns and magnitude of the stable water isotopes in annual mean seawater are well captured in the model, both at the sea surface as well as in the deep ocean. However, the surface water in the Arctic Ocean is not depleted enough, due to the absence of highly depleted precipitation and snowfall. A model–data mismatch is also recognizable in the isotopic composition of the seawater–salinity relationship in midlatitudes that is mainly caused by the coarse grid resolution. Deep-ocean characteristics of the vertical water mass distribution in the Atlantic Ocean closely resemble observational data. The reconstructed δ18Oc at the sea surface shows a good agreement with measurements. However, the model–data fit is weaker when individual species are considered and deviations are most likely attributable to the habitat depth of the foraminifera. Overall, the newly developed stable water isotope package opens wide prospects for long-term simulations in a paleoclimatic context.


Author(s):  
N S Malygina ◽  
R Yu Biryukov ◽  
N A Kuryatnikova ◽  
E Yu Mitrofanova ◽  
D K Pershin ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Paolo Benettin ◽  
Till H. M. Volkmann ◽  
Jana von Freyberg ◽  
Jay Frentress ◽  
Daniele Penna ◽  
...  

Abstract. Stable water isotopes are widely used in ecohydrology as tracers of the transport, storage, and mixing of water on its journey through landscapes and ecosystems. Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the Local Meteoric Water Line (LMWL) that characterizes precipitation. Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation. These soil and xylem water samples frequently plot along linear trends in dual-isotope space. These trendlines are sometimes termed evaporation lines and their intersection with the LMWL is sometimes interpreted as the isotopic composition of the precipitation source water. Here we use numerical experiments based on established isotope fractionation theory to show that these trendlines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation. Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water.


2021 ◽  
pp. 480-492
Author(s):  
V.N. Stepanets ◽  
T.G. Serykh ◽  
T.S. Papina

2020 ◽  
Author(s):  
Marielle Geppert ◽  
Stephan Pfahl ◽  
Ulrich Struck ◽  
Ingo Kirchner ◽  
Elisha Shemang ◽  
...  

&lt;p&gt;Many palaeoclimate reconstructions are based on the fact that stable water isotopes are conserved in different highly resolved paleo-archives such as ice cores or calcium carbonates. Stable water isotopes are tracers of moisture in the atmosphere because they record information about evaporation and condensation processes during the transport of air parcels. These processes cause isotopic fractionation that leads to isotopic enrichment or depletion. The isotopic composition of precipitation is strongly correlated with altitude above sea level, distance to the coast and local surface air temperature. Knowledge on the source and transport of moisture is thus crucial for the interpretation of stable isotopes in precipitation and in palaeo-archives.&lt;br&gt;Studies analysing the linkage between stable water isotope measurements and moisture sources in southern Africa are scarce. Yet, as changes in the transport pattern can influence precipitation patterns and amounts, in a semi-arid region like southern Africa that is threatened by droughts, this knowledge is of particular interest. Thus, the aims of this study are (1) to reveal the principal moisture source areas and transport routes of specific target areas in southern Africa, (2) to assess the influence of different transport patterns on the isotopic composition of precipitation and by this (3) to create a modern analogue for palaeoclimate studies in this region.&lt;br&gt;About 200 water samples, mainly from headwaters of rivers, but also from precipitation events, springs and lakes, were collected throughout southern Africa and the stable water isotope composition (&amp;#948;&lt;sup&gt;2&lt;/sup&gt;H and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O) was analysed. To detect moisture sources for this set of isotope measurements, backward air parcel trajectories were calculated from the sample location, using the LAGRANTO tool based on ERA5 reanalysis data. Variations in specific humidity along the trajectories were then used to detect moisture uptake.&lt;br&gt;The analysis reveals main transport patterns related to the Intertropical Convergence Zone and easterly winds as well as the effects of topographical forcing, which is, for example, very pronounced above Lesotho. The results provide detailed insights into the relationships between atmospheric circulation and &amp;#948;&lt;sup&gt;2&lt;/sup&gt;H and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O values of precipitation over southern Africa, which is a prerequisite for the interpretation of isotopic records that are used for palaeoclimatic reconstructions.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document