EFFECTS OF TIP MASS ON STABILITY OF ROTATING CANTILEVER PIPE CONVEYING FLUID WITH CRACK

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2609-2614 ◽  
Author(s):  
IN SOO SON ◽  
HAN IK YOON ◽  
SANG PIL LEE ◽  
DONG JIN KIM

In this paper, the dynamic stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by numerical method. That is, the effects of the rotating the rotating angular velocity, the mass ratio, the crack and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and always opened during the vibrations. Finally, the stability maps of the cracked rotating pipe system as a rotating angular velocity and mass ratio β are presented.

2012 ◽  
Vol 06 ◽  
pp. 373-378 ◽  
Author(s):  
KWAN DO HUR ◽  
IN SOO SON ◽  
SEONG CHUL LEE

The dynamic stability and natural frequency of elastically restrained pipe conveying fluid with the attached mass and crack are investigated in this paper. The pipe system with a crack is modeled by using extended Hamilton's principle with consideration of bending energy. The crack on the pipe system is represented by a local flexibility matrix and two undamaged beam segments are connected. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. From the governing equations, the influence of attached mass, its position and crack on the dynamic stability of elastically restrained pipe system is presented. Also, the critical flow velocity for the flutter and divergence due to the variation in the position and stiffness of supported spring is studied. Finally, the critical flow velocities and stability maps of the cracked pipe conveying fluid with the attached mass are obtained by the changing parameters.


2022 ◽  
Vol 12 (2) ◽  
pp. 724
Author(s):  
Zilong Guo ◽  
Qiao Ni ◽  
Lin Wang ◽  
Kun Zhou ◽  
Xiangkai Meng

A cantilevered pipe conveying fluid can lose stability via flutter when the flow velocity becomes sufficiently high. In this paper, a dry friction restraint is introduced for the first time, to evaluate the possibility of improving the stability of cantilevered pipes conveying fluid. First, a dynamical model of the cantilevered pipe system with dry friction is established based on the generalized Hamilton’s principle. Then the Galerkin method is utilized to discretize the model of the pipe and to obtain the nonlinear dynamic responses of the pipe. Finally, by changing the values of the friction force and the installation position of the dry friction restraint, the effect of dry friction parameters on the flutter instability of the pipe is evaluated. The results show that the critical flow velocity of the pipe increases with the increment of the friction force. Installing a dry friction restraint near the middle of the pipe can significantly improve the stability of the pipe system. The vibration of the pipe can also be suppressed to some extent by setting reasonable dry friction parameters.


Author(s):  
C. Semler ◽  
M. P. Païdoussis

Abstract This paper deals with the nonlinear dynamics and the stability of cantilevered pipes conveying fluid, where the fluid has a harmonic component of flow velocity, assumed to be small, superposed on a constant mean value. The mean flow velocity is near the critical value for which the pipe becomes unstable by flutter through a Hopf bifurcation. The partial differential equation is transformed into a set of ordinary differential equations (ODEs) using the Galerkin method. The equations of motion contain nonlinear inertial terms, and hence cannot be put into standard form for numerical integration. Various approaches are adopted to tackle the problem: (a) a perturbation method via which the nonlinear inertial terms are removed by finding an equivalent term using the linear equation; the system is then put into first-order form and integrated using a Runge-Kutta scheme; (b) a finite difference method based on Houbolt’s scheme, which leads to a set of nonlinear algebraic equations that is solved with a Newton-Raphson approach; (c) the stability boundaries are obtained using an incremental harmonic balance method as proposed by S.L. Lau. Using the three methods, the dynamics of the pipe conveying fluid is investigated in detail. For example, the effects of (i) the forcing frequency, (ii) the perturbation amplitude, and (iii) the flow velocity are considered. Particular attention is paid to the effects of the nonlinear terms. These results are compared with experiments undertaken in our laboratory, utilizing elastomer pipes conveying water. The pulsating component of the flow is generated by a plunger pump, and the motions are monitored by a noncontacting optical follower system. It is shown, both numerically and experimentally, that periodic and quasiperiodic oscillations can exist, depending on the parameters.


2020 ◽  
Vol 26 (19-20) ◽  
pp. 1824-1834
Author(s):  
Beiming Yu ◽  
Hiroshi Yabuno ◽  
Kiyotaka Yamashita

A method of stabilizing the self-excited oscillation of a cantilevered pipe conveying fluid because of non–self-adjointness is proposed theoretically and experimentally. Complex eigenvalues denoting the natural frequency and damping of the system vary with an increase in the flow velocity. When the flow velocity exceeds a critical value, the flow-generated damping becomes negative and the pipe is dynamically destabilized. The complex eigenvalues with respect to flow velocity are affected by boundary conditions. We, thus, propose a stabilization control actuating the boundary condition. The stabilization method is carried out by applying a bending moment proportional to the bottom displacement of the pipe. The effect of the proposed control method is shown by investigating the stability for the three lowest modes of the system depending on the feedback gain. It is theoretically clarified that the critical flow velocity is increased by the proposed control method. Furthermore, experiments are performed using a fluid conveying pipe with two piezoactuators at the downstream end. The piezoactuators apply a bending moment at the downstream end of the pipe according to the theoretically proposed method. Experimental results verify that the proposed stabilization method suppresses the self-excited oscillation.


2000 ◽  
Vol 68 (2) ◽  
pp. 206-212 ◽  
Author(s):  
I. Elishakoff ◽  
N. Impollonia

The effect of the elastic Winkler and rotatory foundations on the stability of a pipe conveying fluid is investigated in this paper. Both elastic foundations are partially attached to the pipe. It turns out that the single foundation, either translational or rotatory, which is attached to the pipe along its entire length, increases the critical velocity. Such an intuitively anticipated strengthening effect is surprisingly missing for the elastic column on Winkler foundation subjected to the so-called statically applied follower forces. Yet, partial foundation for the pipe conveying fluid is associated with a nonmonotonous dependence of the critical velocity versus the attachment ratio defined as the length of the partial foundation over the entire length of the pipe. It is concluded that such a paradoxical nonmonotonicity is shared by both the realistic structure (pipe conveying fluid) and in the “imagined system,” to use the terminology of Herrmann pertaining to the column under to follower forces.


2015 ◽  
Vol 10 (S318) ◽  
pp. 259-264
Author(s):  
Xiaosheng Xin ◽  
Daniel J. Scheeres ◽  
Xiyun Hou ◽  
Lin Liu

AbstractDue to the close distance to the Sun, solar radiation pressure (SRP) plays an important role in the dynamics of satellites around near-Earth asteroids (NEAs). In this paper, we focus on the equilibrium points of a satellite orbiting around an asteroid in presence of SRP in the asteroid rotating frame. The asteroid is modelled as a uniformly rotating triaxial ellipsoid. When SRP comes into play, the equilibrium points transformed into periodic orbits termed as``dynamical substitutes". We obtain the analytical approximate solutions of the dynamical substitutes from the linearised equations of motion. The analytical solutions are then used as initial guesses and are numerically corrected to compute the accurate orbits of the dynamical substitutes. The stability of the dynamical substitutes is analysed and the stability maps are obtained by varying parameters of the ellipsoid model as well as the magnitude of SRP.


Sign in / Sign up

Export Citation Format

Share Document