scholarly journals MLLP-VRAIN Spanish ASR Systems for the Albayzín-RTVE 2020 Speech-To-Text Challenge: Extension

2022 ◽  
Vol 12 (2) ◽  
pp. 804
Author(s):  
Pau Baquero-Arnal ◽  
Javier Jorge ◽  
Adrià Giménez ◽  
Javier Iranzo-Sánchez ◽  
Alejandro Pérez ◽  
...  

This paper describes the automatic speech recognition (ASR) systems built by the MLLP-VRAIN research group of Universitat Politècnica de València for the Albayzín-RTVE 2020 Speech-to-Text Challenge, and includes an extension of the work consisting of building and evaluating equivalent systems under the closed data conditions from the 2018 challenge. The primary system (p-streaming_1500ms_nlt) was a hybrid ASR system using streaming one-pass decoding with a context window of 1.5 seconds. This system achieved 16.0% WER on the test-2020 set. We also submitted three contrastive systems. From these, we highlight the system c2-streaming_600ms_t which, following a similar configuration as the primary system with a smaller context window of 0.6 s, scored 16.9% WER points on the same test set, with a measured empirical latency of 0.81 ± 0.09 s (mean ± stdev). That is, we obtained state-of-the-art latencies for high-quality automatic live captioning with a small WER degradation of 6% relative. As an extension, the equivalent closed-condition systems obtained 23.3% WER and 23.5% WER, respectively. When evaluated with an unconstrained language model, we obtained 19.9% WER and 20.4% WER; i.e., not far behind the top-performing systems with only 5% of the full acoustic data and with the extra ability of being streaming-capable. Indeed, all of these streaming systems could be put into production environments for automatic captioning of live media streams.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1809
Author(s):  
Long Zhang ◽  
Ziping Zhao ◽  
Chunmei Ma ◽  
Linlin Shan ◽  
Huazhi Sun ◽  
...  

Advanced automatic pronunciation error detection (APED) algorithms are usually based on state-of-the-art automatic speech recognition (ASR) techniques. With the development of deep learning technology, end-to-end ASR technology has gradually matured and achieved positive practical results, which provides us with a new opportunity to update the APED algorithm. We first constructed an end-to-end ASR system based on the hybrid connectionist temporal classification and attention (CTC/attention) architecture. An adaptive parameter was used to enhance the complementarity of the connectionist temporal classification (CTC) model and the attention-based seq2seq model, further improving the performance of the ASR system. After this, the improved ASR system was used in the APED task of Mandarin, and good results were obtained. This new APED method makes force alignment and segmentation unnecessary, and it does not require multiple complex models, such as an acoustic model or a language model. It is convenient and straightforward, and will be a suitable general solution for L1-independent computer-assisted pronunciation training (CAPT). Furthermore, we find that in regards to accuracy metrics, our proposed system based on the improved hybrid CTC/attention architecture is close to the state-of-the-art ASR system based on the deep neural network–deep neural network (DNN–DNN) architecture, and has a stronger effect on the F-measure metrics, which are especially suitable for the requirements of the APED task.


2020 ◽  
Author(s):  
Esmaeil Nourani ◽  
Ehsaneddin Asgari ◽  
Alice C. McHardy ◽  
Mohammad R.K. Mofrad

AbstractWe introduce TripletProt, a new approach for protein representation learning based on the Siamese neural networks. We evaluate TripletProt comprehensively in protein functional annotation tasks including sub-cellular localization (14 categories) and gene ontology prediction (more than 2000 classes), which are both challenging multi-class multi-label classification machine learning problems. We compare the performance of TripletProt with the state-of-the-art approaches including recurrent language model-based approach (i.e., UniRep), as well as protein-protein interaction (PPI) network and sequence-based method (i.e., DeepGO). Our TripletProt showed an overall improvement of F1 score in the above mentioned comprehensive functional annotation tasks, solely relying on the PPI network. TripletProt and in general Siamese Network offer great potentials for the protein informatics tasks and can be widely applied to similar tasks.


2021 ◽  
Vol 2021 (1) ◽  
pp. 209-228
Author(s):  
Yuantian Miao ◽  
Minhui Xue ◽  
Chao Chen ◽  
Lei Pan ◽  
Jun Zhang ◽  
...  

AbstractWith the rapid development of deep learning techniques, the popularity of voice services implemented on various Internet of Things (IoT) devices is ever increasing. In this paper, we examine user-level membership inference in the problem space of voice services, by designing an audio auditor to verify whether a specific user had unwillingly contributed audio used to train an automatic speech recognition (ASR) model under strict black-box access. With user representation of the input audio data and their corresponding translated text, our trained auditor is effective in user-level audit. We also observe that the auditor trained on specific data can be generalized well regardless of the ASR model architecture. We validate the auditor on ASR models trained with LSTM, RNNs, and GRU algorithms on two state-of-the-art pipelines, the hybrid ASR system and the end-to-end ASR system. Finally, we conduct a real-world trial of our auditor on iPhone Siri, achieving an overall accuracy exceeding 80%. We hope the methodology developed in this paper and findings can inform privacy advocates to overhaul IoT privacy.


2021 ◽  
Vol 102 ◽  
pp. 04013
Author(s):  
Md. Atiqur Rahman ◽  
Mohamed Hamada

Modern daily life activities produced lots of information for the advancement of telecommunication. It is a challenging issue to store them on a digital device or transmit it over the Internet, leading to the necessity for data compression. Thus, research on data compression to solve the issue has become a topic of great interest to researchers. Moreover, the size of compressed data is generally smaller than its original. As a result, data compression saves storage and increases transmission speed. In this article, we propose a text compression technique using GPT-2 language model and Huffman coding. In this proposed method, Burrows-Wheeler transform and a list of keys are used to reduce the original text file’s length. Finally, we apply GPT-2 language mode and then Huffman coding for encoding. This proposed method is compared with the state-of-the-art techniques used for text compression. Finally, we show that the proposed method demonstrates a gain in compression ratio compared to the other state-of-the-art methods.


2021 ◽  
Author(s):  
Roshan Rao ◽  
Jason Liu ◽  
Robert Verkuil ◽  
Joshua Meier ◽  
John F. Canny ◽  
...  

AbstractUnsupervised protein language models trained across millions of diverse sequences learn structure and function of proteins. Protein language models studied to date have been trained to perform inference from individual sequences. The longstanding approach in computational biology has been to make inferences from a family of evolutionarily related sequences by fitting a model to each family independently. In this work we combine the two paradigms. We introduce a protein language model which takes as input a set of sequences in the form of a multiple sequence alignment. The model interleaves row and column attention across the input sequences and is trained with a variant of the masked language modeling objective across many protein families. The performance of the model surpasses current state-of-the-art unsupervised structure learning methods by a wide margin, with far greater parameter efficiency than prior state-of-the-art protein language models.


2020 ◽  
Author(s):  
Usman Naseem ◽  
Matloob Khushi ◽  
Vinay Reddy ◽  
Sakthivel Rajendran ◽  
Imran Razzak ◽  
...  

Abstract Background: In recent years, with the growing amount of biomedical documents, coupled with advancement in natural language processing algorithms, the research on biomedical named entity recognition (BioNER) has increased exponentially. However, BioNER research is challenging as NER in the biomedical domain are: (i) often restricted due to limited amount of training data, (ii) an entity can refer to multiple types and concepts depending on its context and, (iii) heavy reliance on acronyms that are sub-domain specific. Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models trained in general corpora which often yields unsatisfactory results. Results: We propose biomedical ALBERT (A Lite Bidirectional Encoder Representations from Transformers for Biomedical Text Mining) - bioALBERT - an effective domain-specific pre-trained language model trained on huge biomedical corpus designed to capture biomedical context-dependent NER. We adopted self-supervised loss function used in ALBERT that targets on modelling inter-sentence coherence to better learn context-dependent representations and incorporated parameter reduction strategies to minimise memory usage and enhance the training time in BioNER. In our experiments, BioALBERT outperformed comparative SOTA BioNER models on eight biomedical NER benchmark datasets with four different entity types. The performance is increased for; (i) disease type corpora by 7.47% (NCBI-disease) and 10.63% (BC5CDR-disease); (ii) drug-chem type corpora by 4.61% (BC5CDR-Chem) and 3.89 (BC4CHEMD); (iii) gene-protein type corpora by 12.25% (BC2GM) and 6.42% (JNLPBA); and (iv) Species type corpora by 6.19% (LINNAEUS) and 23.71% (Species-800) is observed which leads to a state-of-the-art results. Conclusions: The performance of proposed model on four different biomedical entity types shows that our model is robust and generalizable in recognizing biomedical entities in text. We trained four different variants of BioALBERT models which are available for the research community to be used in future research.


2016 ◽  
Vol 4 ◽  
pp. 477-490 ◽  
Author(s):  
Ehsan Shareghi ◽  
Matthias Petri ◽  
Gholamreza Haffari ◽  
Trevor Cohn

Efficient methods for storing and querying are critical for scaling high-order m-gram language models to large corpora. We propose a language model based on compressed suffix trees, a representation that is highly compact and can be easily held in memory, while supporting queries needed in computing language model probabilities on-the-fly. We present several optimisations which improve query runtimes up to 2500×, despite only incurring a modest increase in construction time and memory usage. For large corpora and high Markov orders, our method is highly competitive with the state-of-the-art KenLM package. It imposes much lower memory requirements, often by orders of magnitude, and has runtimes that are either similar (for training) or comparable (for querying).


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Anwar Saeed ◽  
Ayoub Al-Hamadi ◽  
Robert Niese ◽  
Moftah Elzobi

To improve the human-computer interaction (HCI) to be as good as human-human interaction, building an efficient approach for human emotion recognition is required. These emotions could be fused from several modalities such as facial expression, hand gesture, acoustic data, and biophysiological data. In this paper, we address the frame-based perception of the universal human facial expressions (happiness, surprise, anger, disgust, fear, and sadness), with the help of several geometrical features. Unlike many other geometry-based approaches, the frame-based method does not rely on prior knowledge of a person-specific neutral expression; this knowledge is gained through human intervention and not available in real scenarios. Additionally, we provide a method to investigate the performance of the geometry-based approaches under various facial point localization errors. From an evaluation on two public benchmark datasets, we have found that using eight facial points, we can achieve the state-of-the-art recognition rate. However, this state-of-the-art geometry-based approach exploits features derived from 68 facial points and requires prior knowledge of the person-specific neutral expression. The expression recognition rate using geometrical features is adversely affected by the errors in the facial point localization, especially for the expressions with subtle facial deformations.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4540
Author(s):  
Kieran Rendall ◽  
Antonia Nisioti ◽  
Alexios Mylonas

Phishing is one of the most common threats that users face while browsing the web. In the current threat landscape, a targeted phishing attack (i.e., spear phishing) often constitutes the first action of a threat actor during an intrusion campaign. To tackle this threat, many data-driven approaches have been proposed, which mostly rely on the use of supervised machine learning under a single-layer approach. However, such approaches are resource-demanding and, thus, their deployment in production environments is infeasible. Moreover, most previous works utilise a feature set that can be easily tampered with by adversaries. In this paper, we investigate the use of a multi-layered detection framework in which a potential phishing domain is classified multiple times by models using different feature sets. In our work, an additional classification takes place only when the initial one scores below a predefined confidence level, which is set by the system owner. We demonstrate our approach by implementing a two-layered detection system, which uses supervised machine learning to identify phishing attacks. We evaluate our system with a dataset consisting of active phishing attacks and find that its performance is comparable to the state of the art.


2020 ◽  
pp. 016555152096869
Author(s):  
Saedeh Tahery ◽  
Saeed Farzi

With the rapid growth of the Internet, search engines play vital roles in meeting the users’ information needs. However, formulating information needs to simple queries for canonical users is a problem yet. Therefore, query auto-completion, which is one of the most important characteristics of the search engines, is leveraged to provide a ranked list of queries matching the user’s entered prefix. Although query auto-completion utilises useful information provided by search engine logs, time-, semantic- and context-aware features are still important resources of extra knowledge. Specifically, in this study, a hybrid query auto-completion system called TIPS ( Time-aware Personalised Semantic-based query auto-completion) is introduced to combine the well-known systems performing based on popularity and neural language model. Furthermore, this system is supplemented by time-aware features that blend both context and semantic information in a collaborative manner. Experimental studies on the standard AOL dataset are conducted to compare our proposed system with state-of-the-art methods, that is, FactorCell, ConcatCell and Unadapted. The results illustrate the significant superiorities of TIPS in terms of mean reciprocal rank (MRR), especially for short-length prefixes.


Sign in / Sign up

Export Citation Format

Share Document