scholarly journals The Effects of Methane Storage Capacity Using Upgraded Activated Carbon by KOH

2018 ◽  
Vol 8 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jung Park ◽  
Gi Lee ◽  
Sang Hwang ◽  
Ji Kim ◽  
Bum Hong ◽  
...  

In this study, a feasible experiment on adsorbed natural gas (ANG) was performed using activated carbons (ACs) with high surface areas. Upgraded ACs were prepared using chemical activation with potassium hydroxide, and were then applied as adsorbents for methane (CH4) storage. This study had three principal objectives: (i) upgrade ACs with high surface areas; (ii) evaluate the factors regulating CH4 adsorption capacity; and (iii) assess discharge conditions for the delivery of CH4. The results showed that upgraded ACs with surface areas of 3052 m2/g had the highest CH4 storage capacity (0.32 g-CH4/g-ACs at 3.5 MPa), which was over two times higher than the surface area and storage capacity of low-grade ACs (surface area = 1152 m2/g, 0.10 g-CH4/g-ACs). Among the factors such as surface area, packing density, and heat of adsorption in the ANG system, the heat of adsorption played an important role in controlling CH4 adsorption. The released heat also affected the CH4 storage and enhanced available applications. During the discharge of gas from the ANG system, the residual amount of CH4 increased as the temperature decreased. The amount of delivered gas was confirmed using different evacuation flow rates at 0.4 MPa, and the highest efficiency of delivery was 98% at 0.1 L/min. The results of this research strongly suggested that the heat of adsorption should be controlled by both recharging and discharging processes to prevent rapid temperature change in the adsorbent bed.

2020 ◽  
Vol 13 (9) ◽  
pp. 2967-2978 ◽  
Author(s):  
Afnan Altwala ◽  
Robert Mokaya

The O/C atomic ratio of biomass-derived carbonaceous matter is a universal predictor of porosity and packing density, and enables predictable synthesis of activated carbons that have high methane storage of 222 cm3 (STP) cm−3 at 25 oC and 35 bar.


2021 ◽  
Vol 13 (4) ◽  
pp. 1947
Author(s):  
Al Ibtida Sultana ◽  
Nepu Saha ◽  
M. Toufiq Reza

Hydrogen (H2) is largely regarded as a potential cost-efficient clean fuel primarily due to its beneficial properties, such as its high energy content and sustainability. With the rising demand for H2 in the past decades and its favorable characteristics as an energy carrier, the escalating USA consumption of pure H2 can be projected to reach 63 million tons by 2050. Despite the tremendous potential of H2 generation and its widespread application, transportation and storage of H2 have remained the major challenges of a sustainable H2 economy. Various efforts have been undertaken by storing H2 in activated carbons, metal organic frameworks (MOFs), covalent organic frameworks (COFs), etc. Recently, the literature has been stressing the need to develop biomass-based activated carbons as an effective H2 storage material, as these are inexpensive adsorbents with tunable chemical, mechanical, and morphological properties. This article reviews the current research trends and perspectives on the role of various properties of biomass-based activated carbons on its H2 uptake capacity. The critical aspects of the governing factors of H2 storage, namely, the surface morphology (specific surface area, pore volume, and pore size distribution), surface functionality (heteroatom and functional groups), physical condition of H2 storage (temperature and pressure), and thermodynamic properties (heat of adsorption and desorption), are discussed. A comprehensive survey of the literature showed that an “ideal” biomass-based activated carbon sorbent with a micropore size typically below 10 Å, micropore volume greater than 1.5 cm3/g, and high surface area of 4000 m2/g or more may help in substantial gravimetric H2 uptake of >10 wt% at cryogenic conditions (−196 °C), as smaller pores benefit by stronger physisorption due to the high heat of adsorption.


2020 ◽  
Vol 11 (3) ◽  
pp. 10265-10277

Activated carbons derived from rice husk pyrolysis (biochar) were prepared by chemical activation at different biochar/K2CO3 proportions in order to assess its capacity as adsorbent. The activated material was characterized by X-ray diffraction (DRX), Raman spectroscopy, scanning electron microscopy (SEM), the Brunauer, Emmet, and Teller (BET) method. The Barret, Joyner, and Halenda (BJH) method and functional density theory (DFT), presenting interesting texture properties, such as high surface area (BET 1850 m2 g-1) and microporosity, which allow its use as a sorbent phase in solid-phase extraction (SPE) of the main constituents of the aqueous pyrolysis phase. It was demonstrated that the activated carbon (RH-AC) adsorbs different compounds present in from rice husk pyrolysis wastewater through quantitative analysis by high-performance liquid chromatography with a diode-array detector (HPLC-DAD), presenting good linearity (R2 > 0.996) at 280 nm.


2014 ◽  
Vol 1644 ◽  
Author(s):  
Paul R. Armstrong ◽  
Zachary J. Morchesky ◽  
Dustin T. Hess ◽  
Kofi W. Adu ◽  
David. K. Essumang ◽  
...  

ABSTRACTWe present preliminary results on a processing protocol by chemical activation that transforms organic waste product such as coconut husk into high surface area activated carbon. Dried raw materials of the coconut husk were carbonized anaerobically into char. The char was impregnated with KOH of different ratios and were activated at 800°C and 900°C. The transmission electron microscope was used to acquire structural and morphological information of the activated carbon, and the surface area and porosity analysis were performed using Micromeritics ASAP 2020 analyzer. The activated carbons show both micropores and mesopores with specific surface area as high as 2900m2/g.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4658 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Anita Cymann-Sachajdak ◽  
Paweł Kazimierski ◽  
Marek Klein ◽  
Justyna Łuczak ◽  
...  

In this work, we present the preparation and characterization of biomass-derived activated carbon (AC) in view of its application as electrode material for electrochemical capacitors. Porous carbons are prepared by pyrolysis of chestnut seeds and subsequent activation of the obtained biochar. We investigate here two activation methods, namely, physical by CO2 and chemical using KOH. Morphology, structure and specific surface area (SSA) of synthesized activated carbons are investigated by Brunauer-Emmett-Teller (BET) technique and scanning electron microscopy (SEM). Electrochemical studies show a clear dependence between the activation method (influencing porosity and SSA of AC) and electric capacitance values as well as rate capability of investigated electrodes. It is shown that well-developed porosity and high surface area, achieved by the chemical activation process, result in outstanding electrochemical performance of the chestnut-derived porous carbons.


2011 ◽  
Vol 236-238 ◽  
pp. 225-228
Author(s):  
Xing Min Wang ◽  
Long Jun Xu ◽  
Jiang He Xu ◽  
Gui Zhi Zhang ◽  
Shao Bo Wu

High surface area activated carbon was prepared from waste tobacco after extracting nicotine with microbial enzymatic and chemical activation. Surface properties of the prepared carbons were performed using nitrogen adsorption, and the adsorption behavior of the prepared carbons under different operation conditions on methyl orange was investigated by a batch adsorption experiment. The experimental results show that: using waste tobacco 5.0035g and white- rot fungi volume is 2.0ml, under the conditions of enzymatic time of 36h, activation temperature at 600°C and activation time of 2h, the concentration of ZnCl2 activation is 20%,The BET surface area of carbons prepared reach 1356.53m2/g, the average aperture is3.78nm, and the hole dimension is0.17 ml/g. The adsorption amount on methyl orange of 43mg/L reach 4979.31mg/g, and it show high adsorption capacity.


Author(s):  
Atakan Toprak ◽  
Turkan Kopac

Abstract Activated carbons of various features were produced by the impregnation of local coal samples that were taken from Kilimli region of Zonguldak (Turkey) with chemical agents KOH, NaOH and ZnCl2 at different temperatures (600–800 °C) and concentrations (1:1–6:1 agent:coal), for their evaluation in CO2 adsorption studies. BET, DR, t-plot and DFT methods were used for the characterization of carbon samples based on N2 adsorption data obtained at 77 K. The pore sizes of activated carbons produced were generally observed to be in between 13–25 Å, containing highly micropores. Mesopore formations were higher in samples treated with ZnCl2. The highest value for the BET surface area was found as 2,599 m2 g−1 for the samples treated with KOH at 800 °C with a KOH to coal ratio of 4:1. It was observed that the CO2 adsorption capacities obtained at atmospheric pressure and 273 K were considerably affected by the micropore volume and surface area. The highest CO2 adsorption capacities were found as 9.09 mmol/g (28.57 % wt) and 8.25 mmol g−1 (26.65 % wt) for the samples obtained with KOH and NaOH treatments, respectively, at ratio of 4:1. The activated carbons produced were ordered as KOH>NaOH>ZnCl2, according to their surface areas, micropore volumes and CO2 adsorption capacities. The low-cost experimental methods developed by the utilization of local coals in this study enabled an effective capture of CO2 before its emission to atmosphere.


Author(s):  
L. Scott Blankenship

Correction for ‘Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity’ by L. Scott Blankenship et al., Energy Environ. Sci., 2017, 10, 2552–2562, DOI: 10.1039/C7EE02616A.


2013 ◽  
Vol 38 (25) ◽  
pp. 10453-10460 ◽  
Author(s):  
W. Zhao ◽  
V. Fierro ◽  
N. Fernández-Huerta ◽  
M.T. Izquierdo ◽  
A. Celzard

Sign in / Sign up

Export Citation Format

Share Document