Carbon Dioxide Adsorption Using High Surface Area Activated Carbons from Local Coals Modified by KOH, NaOH and ZnCl2 Agents

Author(s):  
Atakan Toprak ◽  
Turkan Kopac

Abstract Activated carbons of various features were produced by the impregnation of local coal samples that were taken from Kilimli region of Zonguldak (Turkey) with chemical agents KOH, NaOH and ZnCl2 at different temperatures (600–800 °C) and concentrations (1:1–6:1 agent:coal), for their evaluation in CO2 adsorption studies. BET, DR, t-plot and DFT methods were used for the characterization of carbon samples based on N2 adsorption data obtained at 77 K. The pore sizes of activated carbons produced were generally observed to be in between 13–25 Å, containing highly micropores. Mesopore formations were higher in samples treated with ZnCl2. The highest value for the BET surface area was found as 2,599 m2 g−1 for the samples treated with KOH at 800 °C with a KOH to coal ratio of 4:1. It was observed that the CO2 adsorption capacities obtained at atmospheric pressure and 273 K were considerably affected by the micropore volume and surface area. The highest CO2 adsorption capacities were found as 9.09 mmol/g (28.57 % wt) and 8.25 mmol g−1 (26.65 % wt) for the samples obtained with KOH and NaOH treatments, respectively, at ratio of 4:1. The activated carbons produced were ordered as KOH>NaOH>ZnCl2, according to their surface areas, micropore volumes and CO2 adsorption capacities. The low-cost experimental methods developed by the utilization of local coals in this study enabled an effective capture of CO2 before its emission to atmosphere.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2829
Author(s):  
Zhongzhi Yang ◽  
Roland Gleisner ◽  
Doreen H. Mann ◽  
Junming Xu ◽  
Jianchun Jiang ◽  
...  

Activated carbon (AC) with a very high surface area of over 2000 m2/g was produced from low sulfur acid hydrotropic lignin (AHL) from poplar wood using H3PO4 at a moderate temperature of 450 °C (AHL-AC6). ACs with similar surface areas were also obtained under the same activation condition from commercial hardwood alkali lignin and lignosulfonate. Initial evaluation of AC performance was carried out using nitrogen adsorption-desorption and dye adsorption. AHL-AC6 exhibited the best specific surface area and dye adsorption performance. Furthermore, the adsorption results of congo red (CR) and methylene blue (MB) showed AHL-AC6 had greater adsorption capacity than those reported in literature. The dye adsorption data fit to the Langmuir model well. The fitting parameter suggests the adsorption is nearly strong and near irreversible, especially for MB. The present study for the first time provided a procedure for producing AC from lignin with Brunauer–Emmett–Teller (BET) surface area >2000 m2/g using low cost and low environmental impact H3PO4 at moderate temperatures.


2012 ◽  
Vol 66 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Ş. Gül ◽  
O. Eren ◽  
Ş. Kır ◽  
Y. Önal

The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption. The highest BET surface area carbon (1,275 m2/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 735 ◽  
Author(s):  
Ghulam Hussain ◽  
Anthony O’Mullane ◽  
Debbie Silvester

Electrochemical gas sensors are often used for identifying and quantifying redox-active analyte gases in the atmosphere. However, for amperometric sensors, the current signal is usually dependent on the electroactive surface area, which can become small when using microelectrodes and miniaturized devices. Microarray thin-film electrodes (MATFEs) are commercially available, low-cost devices that give enhanced current densities compared to mm-sized electrodes, but still give low current responses (e.g., less than one nanoamp), when detecting low concentrations of gases. To overcome this, we have modified the surface of the MATFEs by depositing platinum into the recessed holes to create arrays of 3D structures with high surface areas. Dendritic structures have been formed using an additive, lead acetate (Pb(OAc)2) into the plating solution. One-step and two-step depositions were explored, with a total deposition time of 300 s or 420 s. The modified MATFEs were then studied for their behavior towards oxygen reduction in the room temperature ionic liquid (RTIL) [N8,2,2,2][NTf2]. Significantly enhanced currents for oxygen were observed, ranging from 9 to 16 times the current of the unmodified MATFE. The highest sensitivity was obtained using a two-step deposition with a total time of 420 s, and both steps containing Pb(OAc)2. This work shows that commercially-available microelectrodes can be favorably modified to give significantly enhanced analytical performances.


Author(s):  
Atakan Toprak ◽  
Turkan Kopac

Abstract This paper investigates the methane adsorption characteristics of activated carbons produced from coal by activation with KOH, NaOH and ZnCl2 treatments at different agent to coal ratios (1:1–6:1) and temperatures (600–800 °C) under N2 flow. CH4 adsorption capacities and desorption behaviors of the activated carbons were examined at 0 °C and 25 °C. The relationship between CH4 adsorption characteristics and surface properties of activated carbons, such as BET surface area determined by N2 adsorption at −196 °C, and micropore volume determined by CO2 adsorption at 0 °C were investigated. Optimal results for CH4 adsorption at 0 °C and 25 °C were obtained for the activated carbon samples obtained with KOH treatment at 800 °C at 4:1 ratio, as 2.67 and 1.12 mmol/g, respectively. The results have shown that CH4 adsorption increased proportionally with micropore volume of activated carbons, whereas BET surface area does not exhibit an exact consistency. CH4 adsorption-desorption isotherms at 25 °C have shown that an increase in mesopore formation caused a decrease in adsorption; but allowed desorption to be reversible. Higher methane adsorption capacities were obtained from activated carbons produced from coal by various treatments in this study than most of the reported results in literature at the similar conditions, indicating the suitability of the evaluated materials for industrial applications of methane storage.


NANO ◽  
2016 ◽  
Vol 11 (03) ◽  
pp. 1650028 ◽  
Author(s):  
Zezhong Xu ◽  
Jingyu Si

H2O2 detection plays an important role in electrochemical sensing since H2O2 often acts as an intermediate product or regulator in various reactions. Nanoporous carbon (NPC) can be a potential candidate in electrochemical sensing because of its high specific surface area, various pore sizes and structures. In this work, we reported the preparation of N-doped NPC derived from the highly available, accessible and recyclable plant Typha orientalis. The products have high surface area (highest surface areas of 1439.0 m2 g[Formula: see text] and a number of nanopores. Highest content of nitrogen atom in the product is 3.66 at.%). Typical product exhibits high electrocatalytic activity for reduction of hydrogen peroxide. The product may have further use for glucose biosensing. We developed a low-cost, simple and readily scalable approach to prepare the excellent carbon electrocatalyst directly from crude biomass. In addition, because of high surface area and doping of nitrogen element, the product may find broad applications in the fields of supercapacitors, lithium-ion batteries, gas uptake and so on.


2011 ◽  
Vol 1334 ◽  
Author(s):  
Tyler G. Voskuilen ◽  
Timothée L. Pourpoint

ABSTRACTAn experimental study of hydrogen adsorption in a variety of high-surface area adsorbent materials has been conducted at room temperature and pressures up to 500 bar on high surface area activated carbons, zeolite templated carbons (ZTC), and metal organic frameworks (MOFs). For all materials, excess hydrogen adsorption isotherms were measured up to 500 bar and have been analyzed in terms of the BET surface area and pore size distribution. The materials were also evaluated for their increase in hydrogen storage density over compressed gas. It was determined that, due to the lower excess adsorption and skeletal densities for the microstructured materials, MOF-177 and ZTC have worse storage densities than compressed gas at most pressures, even when assuming a bed compaction factor of two, while the activated carbons offer marginal increases in storage density over the pressure range investigated.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20601-20611
Author(s):  
Md. Mijanur Rahman ◽  
Kenta Inaba ◽  
Garavdorj Batnyagt ◽  
Masato Saikawa ◽  
Yoshiki Kato ◽  
...  

Herein, we demonstrated that carbon-supported platinum (Pt/C) is a low-cost and high-performance electrocatalyst for polymer electrolyte fuel cells (PEFCs).


2013 ◽  
Vol 38 (25) ◽  
pp. 10453-10460 ◽  
Author(s):  
W. Zhao ◽  
V. Fierro ◽  
N. Fernández-Huerta ◽  
M.T. Izquierdo ◽  
A. Celzard

2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


Sign in / Sign up

Export Citation Format

Share Document