scholarly journals Photocatalytic Activity of Monosized AuZnO Composite Nanoparticles

2018 ◽  
Vol 9 (1) ◽  
pp. 111 ◽  
Author(s):  
Chenguang Ma ◽  
Xianhong Wang ◽  
Shixia Zhan ◽  
Xuemei Li ◽  
Xiao Liu ◽  
...  

Photocatalytic activity of monosized AuZnO composite nanoparticles with different compositions were synthesized by the one-pot polyol procedure, using the triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-blockpoly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The structure and morphology of the composite nanoparticles were analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), selected area electron diffraction (SAED), a transmission electron microscope (TEM) and high resolution transmission electron microscopy (HRTEM). The characterization showed that the AuZnO composite nanoparticles were spherical, with narrow particle size distribution and high crystallinity. The Fourier transform infrared spectroscopy (FTIR) study confirms the PEO-PPO-PEO molecules on the surface of the composite nanoparticles. The investigations by ultraviolet-visible light absorbance spectrometer (UV-Vis) and photoluminescence spectrophotometer (PL) demonstrate well the dispersibility and excellent optical performance of the AuZnO composite nanoparticles. Photocatalytic activity and reusability of the AuZnO nanoparticles in UV and visible light regions was evaluated by the photocatalytic degradation of Rhodamine B (RhB). The experimental results show that the AuZnO composite nanoparticles with a suitable amount of Au loading have stability and improved photocatalytic activity. AuZnO composite nanoparticles are effective and stable for the degradation of organic pollutants in aqueous solution.

2016 ◽  
Vol 69 (1) ◽  
pp. 119 ◽  
Author(s):  
Li Lin ◽  
Ya Wang ◽  
Manhong Huang ◽  
Donghui Chen

Three-dimensional (3D) BiOBr/BiOI hierarchical microspheres were successfully fabricated on the surface of fly ash cenospheres (FACs) via a facile one-pot solvothermal method for the first time. The as-prepared samples were characterized by XRD, SEM, energy-dispersive X-ray spectroscopy, UV–visible diffuse reflectance spectroscopy, and high-resolution transmission electron microscopy. The results indicated that the loaded hierarchical microspheres exhibited a uniform distribution, and some aggregation was observed. These well-dispersed hierarchical microspheres were composed of 2D nanosheets, which possess heterojunction structures. Based on the photodegradation tests examining the removal of rhodamine B from water under visible light irradiation (λ > 420 nm), the photocatalytic activity of BiOB/BiOI/FACs was superior to that of BiOBr/FACs and BiOI/FACs. A proposed mechanism for the enhanced photocatalytic activity displayed by BiOB/BiOI/FACs is discussed.


NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


NANO ◽  
2016 ◽  
Vol 11 (03) ◽  
pp. 1650035 ◽  
Author(s):  
Lin Ma ◽  
Limei Xu ◽  
Xuyao Xu ◽  
Xiaoping Zhou ◽  
Lingling Zhang

Sulfur-doped SnO2 nanoparticles with ultrafine sizes have been successfully prepared by a one-pot hydrothermal method. The obtained samples are characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), thermogravimetric (TG), analyzer UV-Vis spectroscopy, photoluminescence (PL) and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the doping level of sulfur element as well as the bandgaps of SnO2 can be controlled to a certain extent by varying the amount of L-cysteine (L-cys). When evaluated as photocatalysts in the degradation of rhodamine B (RhB) and reduction of Cr(VI) under visible light region, the resultant sulfur-doped SnO2 nanoparticles demonstrate obviously enhanced photocatalytic activities due to the markedly improved visible light response and effective separation of the photo-generated electron–hole pairs.


2018 ◽  
Vol 5 (8) ◽  
pp. 180613 ◽  
Author(s):  
Haijin Liu ◽  
Peiyao Li ◽  
Haokun Bai ◽  
Cuiwei Du ◽  
Dandan Wei ◽  
...  

Anatase TiO 2 with {001} facets is much more active than that with {101} facets, which has been verified via experiments and theoretical calculations. Graphene has garnered much attention since it was initially synthesized, due to its unique properties. In this study, reduced graphene oxide (RGO)/{001} faceted TiO 2 composites were fabricated via a solvothermal method. The composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectrophotometry, photoluminescence and Raman analysis. The results revealed that the graphene oxide was reduced during the preparation process of the {001} faceted TiO 2 , and combined with the surface of {001} TiO 2 . The photocatalytic activities of the composites were evaluated through the degradation of basic violet, under both white light ( λ > 390 nm) and visible light ( λ = 420 nm) irradiation. The results indicated that the photocatalytic activities of the {001} faceted TiO 2 were significantly improved following the incorporation of RGO, particularly under visible light irradiation. Theoretical calculations showed that the band structure of the {001} faceted TiO 2 was modified via graphene hybridization, where the separation of photoinduced electron–hole pairs was promoted; thus, the photocatalytic activity was enhanced.


2013 ◽  
Vol 709 ◽  
pp. 7-10
Author(s):  
Jing Li ◽  
Xi Hua Du ◽  
Wei Min Dai ◽  
Yong Cai Zhang

A low temperature (130 °C) hydrothermal method was proposed for the synthesis of SnO2-SnS2 nanocomposite. The composition, structure and optical property of the as-synthesized SnO2-SnS2 nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic activity was tested by the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation. It was found that the as-synthesized SnO2-SnS2 nanocomposite exhibited high photocatalytic activity in the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation, whereas SnO2 nanoparticles displayed no photocatalytic activity in the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation.


2014 ◽  
Vol 898 ◽  
pp. 23-26
Author(s):  
Jing Li ◽  
Wei Sun ◽  
Wei Min Dai ◽  
Yong Cai Zhang

TiO2/SnS2 nanocomposite was synthesized via hydrothermal treatment of tin (IV) chloride pentahydrate, thioacetamide and TiO2 nanotubes in deionized water at 150 °C for 3 h. The structure, composition and optical property of the as-synthesized nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic property was tested in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation. It was observed that TiO2 nanotubes exhibited no photocatalytic activity, whereas TiO2/SnS2 nanocomposite exhibited photocatalytic activity in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation.


2021 ◽  
Author(s):  
Yu Fan ◽  
Yan-ning Yang ◽  
Chen Ding

Abstract The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), and photoluminescence (PL) techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50% to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron-hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. The photocatalytic mechanism was proposed through the active matter capture experiment.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Da Zhang ◽  
Liang Chen ◽  
Chengjing Xiao ◽  
Jing Feng ◽  
Lingmin Liao ◽  
...  

Single-crystal BiOCl nanosheets, with high{001}facets exposed, were synthesized through a facile hydrolysis reaction under general atmospheric pressure, without adding any organic surfactant or agent. The thickness of the BiOCl nanosheets is about 20 nm, and the diameter is arranged from 200 to 400 nm. The structure of the BiOCl nanosheets was characterized by X-ray diffraction, energy disperse X-ray spectrum, transmission electron microscopy, and selective area electron diffraction. Moreover, three different dyes were used as model molecules to test the photocatalytic activity of BiOCl nanosheets under visible light. It was found that the BiOCl nanosheets possess selective photocatalytic behavior as their activity over RhB is much higher than that over MO or MB. Based on the analysis of the experimental results, the potential mechanism was discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


2019 ◽  
Vol 79 (8) ◽  
pp. 1494-1502 ◽  
Author(s):  
Yongzheng Duan ◽  
Haibo Yao ◽  
Jing Li ◽  
Xili Shang ◽  
Dongmei Jia ◽  
...  

Abstract Bi2O2CO3 modified graphitic carbon nitride (g-C3N4) nanosheets were prepared by a simple one-pot synthetic strategy. In the presence of ammonium nitrate, different mass ratios of bismuth nitrate/melamine were used to fabricate these catalysts, which were characterized by X-ray diffraction (XRD), N2-physisorption, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis analysis, and photoluminescence (PL). The catalytic properties of composites were evaluated by photodegrading tetracycline hydrochloride (TC) under visible light irradiation. Among these catalysts, Bi2O2CO3(1.5)/g-C3N4 showed the highest catalytic activity, which was more than 16 times greater than the pristine g-C3N4 material. The improved photocatalytic properties of Bi2O2CO3/g-C3N4 may be due to the formation of a heterojunction between Bi2O2CO3 and g-C3N4, leading to the effective separation of photo-induced carriers and the enhanced absorption of visible light. Furthermore, the Bi2O2CO3/g-C3N4 composites had considerable catalytic stability, which was a key element for their potential applications.


Sign in / Sign up

Export Citation Format

Share Document