scholarly journals Thermodynamic Performance Analyses and Optimization of Dual-Loop Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery

2019 ◽  
Vol 9 (4) ◽  
pp. 680 ◽  
Author(s):  
Zhong Ge ◽  
Jian Li ◽  
Yuanyuan Duan ◽  
Zhen Yang ◽  
Zhiyong Xie

Waste heats of an internal combustion engine (ICE) are recovered by a dual-loop organic Rankine cycle (DORC). Thermodynamic performance analyses and optimizations are conducted with 523.15–623.15 K exhaust gas temperature (Tg1). Cyclopentane, cyclohexane, benzene, and toluene are selected as working fluids for high-temperature loop (HTL), whereas R1234ze(E), R600a, R245fa, and R601a are selected as working fluids for low-temperature loop (LTL). The HTL evaporation temperature, condensation temperature, and superheat degree are optimized through a genetic algorithm, and net power output is selected as the objective function. Influences of Tg1 on system net power output, thermal efficiency, exergy efficiency, HTL evaporation temperature, HTL condensation temperature, HTL superheat degree, exhaust gas temperature at the exit of the HTL evaporator, heat utilization ratio, and exergy destruction rate of the components are analyzed. Results are presented as follows: the net power output is mainly influenced by HTL working fluid. The optimal LTL working fluid is R1234ze(E). The optimal HTL evaporator temperature increases with Tg1 until it reaches the upper limit. The optimal HTL condensation temperature increases initially and later remains unchanged for a cyclopentane system, thus keeping constant for other systems. Saturated cycle is suitable for cyclohexane, benzene, and toluene systems. Superheat cycle improves the net power output for a cyclopentane system when Tg1 is 568.15–623.15 K.

2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Wahiba Yaïci ◽  
Evgueniy Entchev ◽  
Pouyan Talebizadehsardari ◽  
Michela Longo

Abstract Overall, there are numerous sustainable sources of renewable, low-temperature heat, principally solar energy, geothermal energy, and energy produced from industrial wastes. Extended utilization of these low-temperature alternatives has a certain capacity of decreasing fossil fuel use with its associated very hazardous greenhouse gas emissions. Researchers have commonly recognized the organic Rankine cycle (ORC) as a feasible and suitable system to produce electrical power from renewable sources based on its advantageous use of volatile organic fluids as working fluids (WFs). Researchers have similarly shown an affinity to the exploitation of zeotropic mixtures as ORC WFs due to their capability to enhance the thermodynamic performance of ORC systems, an achievement supported by improved fits of the temperature profiles of the WF and the heat source/sink. This paper determines both the technical feasibility and the benefits of using zeotropic mixtures as WFs by means of a simulation study of an ORC system. This study analyzes the thermodynamic performance of ORC systems using zeotropic WF mixtures to produce electricity driven by low-temperature solar heat sources for use in buildings. A thermodynamic model is created with an ORC system with and without a regenerator. Five zeotropic mixtures with diverse compositions between 0 and 1 in 0.2 increments of R245fa/propane, R245fa/hexane, R245fa/heptane, pentane/hexane, and isopentane/hexane are assessed and compared with identify the best blends of mixtures that are able to produce superior efficiency in their system cycles. Results disclosed that R245fa/propane (0.4/0.6) with regenerator produces the highest net power output of 7.9 kW and cycle efficiency of 9.4% at the operating condition with a hot source temperature of 85 °C. The study also investigates the effects of the volume flow ratio, and evaporation and condensation temperature glide on the ORC’s thermodynamic performance. Following a thorough analysis of each mixture, R245fa/propane is chosen for a parametric study to examine the effects of operating factors on the system’s efficiency and sustainability index. It was found that the highest cycle efficiency and highest second law cycle efficiency of around 10.5% and 84.0%, respectively, were attained with a mass composition of 0.6/0.4 at the hot source temperature of 95 °C and cold source temperature of 20 °C with a net power output of 9.6 kW. Moreover, results revealed that for zeotropic mixtures, there is an optimal composition range within which binary mixtures are tending to work more efficiently than the component pure fluids. In addition, a significant increase in cycle efficiency can be achieved with a regenerative ORC, with cycle efficiency in the range 3.1–9.8% versus 8.6–17.4% for ORC both without and with regeneration, respectively. In conclusion, utilizing zeotropic mixtures may well expand the restriction faced in choosing WFs for solar-powered ORC-based micro-combined heat and power (CHP) systems.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4623 ◽  
Author(s):  
Liya Ren ◽  
Huaixin Wang

Compared with the basic organic and steam Rankine cycles, the organic trans-critical cycle (OTC), steam flash cycle (SFC) and steam dual-pressure cycle (SDC) can be regarded as the improved cycle configurations for the waste heat power recovery since they can achieve better temperature matching between the heat source and working fluid in the heat addition process. This study investigates and compares the thermodynamic performance of the OTC, SFC, and SDC based on the waste heat source from the cement kiln with an initial temperature of 320 °C and mass flow rate of 86.2 kg/s. The effects of the main parameters on the cycle performance are analyzed and the parameter optimization is performed with net power output as the objective function. Results indicate that the maximum net power output of SDC is slightly higher than that of SFC and the OTC using n-pentane provides a 19.74% increase in net power output over the SDC since it can achieve the higher use of waste heat and higher turbine efficiency. However, the turbine inlet temperature of the OTC is limited by the thermal stability of the organic working fluid, hence the SDC outputs more power than that of the OTC when the initial temperature of the exhaust gas exceeds 415 °C.


Author(s):  
Giancarlo Chiatti ◽  
Ornella Chiavola

A comparative series of experimental tests has been performed on a 4-stroke multi cylinder indirect injection diesel engine fueled with diesel oil, pure gas-turbine fuel and gas-turbine fuel with additives. The engine has been equipped aimed at monitoring both the overall performances and the variation with time of the pressure in the pre-combustion chamber. Some key parameters have been investigated at different engine speeds and loads (ignition delay, pressure rise in the pre-combustion chamber, power output, specific fuel consumption, exhaust gas temperature) and discussed results are presented.


Author(s):  
Maohai Wang ◽  
Thomas Josef Daun ◽  
Yangjun Zhang ◽  
Weilin Zhuge

In this paper, the development of a thermoelectric generator (TEG) simulation model and its implementation into an internal combustion engine (ICE) system model are demonstrated. The TEG model is calibrated with respect to an experimental basis presented in a previously published paper. A TEG parameter study, an analysis of the overall system and the interaction between the TEG and the ICE are carried out. The simulation results indicate that the exhaust gas temperature has a much more significant influence on the TEG performance than the exhaust gas mass flow rate. Without considering the influence of additional backpressure, the application of a TEG shows potential to increase the effective engine power; thereby improving the overall efficiency by approximately 0.6 to 1.7% (depending on engine speed and load). However, when taking additional backpressure into account, this gain in effective engine power is reduced slightly, resulting in a change of the efficiency range to between 0.2 and 1.7%. This illustrates the importance of taking the backpressure into account when designing a real world TEG.


Author(s):  
Ganesh M ◽  
Jagadeesan S ◽  
Bharathwaj S

The emerging world need alternative fuel for diesel and petrol. This is the experiment that using the carbide as the alternative fuel for internal combustion engine by converting the carbide as the acetylene using water. The brake thermal efficiency, exhaust gas temperature, smoke emission, CO2 emission, NOx emission, hydrocarbon emission, performance of the engine is studied under this Experiment


2020 ◽  
pp. 431-434
Author(s):  
Oliver Arndt

This paper deals with the conversion of coke fired lime kilns to gas and the conclusions drawn from the completed projects. The paper presents (1) the decision process associated with the adoption of the new technology, (2) the necessary steps of the conversion, (3) the experiences and issues which occurred during the first campaign, (4) the impacts on the beet sugar factory (i.e. on the CO2 balance and exhaust gas temperature), (5) the long term impressions and capabilities of several campaigns of operation, (6) the details of available technologies and (7) additional benefits that would justify a conversion from coke to natural gas operation on existing lime kilns. (8) Forecast view to develop systems usable for alternative gaseous fuels (e.g. biogas).


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2012 ◽  
Vol 622-623 ◽  
pp. 1162-1167
Author(s):  
Han Fei Tuo

In this study, energetic based fluid selection for a solid oxide fuel cell-organic rankine combined power system is investigated. 9 dry organic fluids with varied critical temperatures are chosen and their corresponding ORC cycle performances are evaluated at different turbine inlet temperatures and exhaust gas temperature (waste heat source) from the upper cycle. It is found that actual ORC cycle efficiency for each fluid strongly depends on the waste heat recovery performance of the heat recovery vapor generator. Exhaust gas temperature determines the optimal fluid which yields the highest efficiency.


Sign in / Sign up

Export Citation Format

Share Document