scholarly journals Recent Advances in Plasmonic Sensor-Based Fiber Optic Probes for Biological Applications

2019 ◽  
Vol 9 (5) ◽  
pp. 949 ◽  
Author(s):  
M. Gandhi ◽  
Suoda Chu ◽  
K. Senthilnathan ◽  
P. Babu ◽  
K. Nakkeeran ◽  
...  

The survey focuses on the most significant contributions in the field of fiber optic plasmonic sensors (FOPS) in recent years. FOPSs are plasmonic sensor-based fiber optic probes that use an optical field to measure the biological agents. Owing to their high sensitivity, high resolution, and low cost, FOPS turn out to be potential alternatives to conventional biological fiber optic sensors. FOPS use optical transduction mechanisms to enhance sensitivity and resolution. The optical transduction mechanisms of FOPS with different geometrical structures and the photonic properties of the geometries are discussed in detail. The studies of optical properties with a combination of suitable materials for testing the biosamples allow for diagnosing diseases in the medical field.

2018 ◽  
Vol 96 (4) ◽  
pp. 359-365
Author(s):  
Yanping Xu ◽  
Xiaoyi Bao

Micro-structured fibers are important devices that have drawn intensive attentions and proved to be powerful platforms for various applications over the past decades due to their remarkable merits and advantages, such as small footprint, immunity to electromagnetic interferences, light weight, high physical flexibility, and low cost. Modifications in optical fibers can be used as light-steering elements to excite and couple back different core and cladding modes and form various in-fiber structures, including in-line fiber interferometer, fiber micro-cantilever, fiber random gratings, and so on. These micro-structures, when applied as fiber-optic sensors in the presence of external disturbances, show high sensitivity in terms of the significant changes in the guided light features. Novel micro-structured bend-insensitive fiber-based in-line fiber interferometer and micro-cantilever have been proposed to realize both static and dynamic parameter measurements, including temperature, axial strain, surrounding refractive index, and vibration. We have also developed a novel fiber random grating along with a spectral correlation algorithm for simultaneous measurement of three static measurands. To move a step forward, random fiber lasers based on fiber random grating are achieved for either improving the laser performances or sensing applications of temperature, strain, and ultrasound measurements with high sensitivity.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 973
Author(s):  
N. L. Kazanskiy ◽  
S. N. Khonina ◽  
M. A. Butt ◽  
A. Kaźmierczak ◽  
R. Piramidowicz

Optical sensors for biomedical applications have gained prominence in recent decades due to their compact size, high sensitivity, reliability, portability, and low cost. In this review, we summarized and discussed a few selected techniques and corresponding technological platforms enabling the manufacturing of optical biomedical sensors of different types. We discussed integrated optical biosensors, vertical grating couplers, plasmonic sensors, surface plasmon resonance optical fiber biosensors, and metasurface biosensors, Photonic crystal-based biosensors, thin metal films biosensors, and fiber Bragg grating biosensors as the most representative cases. All of these might enable the identification of symptoms of deadly illnesses in their early stages; thus, potentially saving a patient’s life. The aim of this paper was not to render a definitive judgment in favor of one sensor technology over another. We presented the pros and cons of all the major sensor systems enabling the readers to choose the solution tailored to their needs and demands.


Biosensors ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 77 ◽  
Author(s):  
Yashar Esfahani Monfared

Plasmonic fiber-optic biosensors combine the flexibility and compactness of optical fibers and high sensitivity of nanomaterials to their surrounding medium, to detect biological species such as cells, proteins, and DNA. Due to their small size, accuracy, low cost, and possibility of remote and distributed sensing, plasmonic fiber-optic biosensors are promising alternatives to traditional methods for biomolecule detection, and can result in significant advances in clinical diagnostics, drug discovery, food process control, disease, and environmental monitoring. In this review article, we overview the key plasmonic fiber-optic biosensing design concepts, including geometries based on conventional optical fibers like unclad, side-polished, tapered, and U-shaped fiber designs, and geometries based on specialty optical fibers, such as photonic crystal fibers and tilted fiber Bragg gratings. The review will be of benefit to both engineers in the field of optical fiber technology and scientists in the fields of biosensing.


Nanoscale ◽  
2017 ◽  
Vol 9 (31) ◽  
pp. 11085-11092 ◽  
Author(s):  
Yujia Wang ◽  
Chengwei Sun ◽  
Hongyun Li ◽  
Qihuang Gong ◽  
Jianjun Chen

The high-sensitivity self-reference plasmonic sensor is experimentally demonstrated based on the double Fano resonances in the gold grating, and the error contributions from the temperature noises are greatly reduced.


Author(s):  
Jovan S. Bajić ◽  
Dragan Z. Stupar ◽  
Lazo M. Manojlović ◽  
Miloš P. Slankamenac ◽  
Miloš B. Živanov

Author(s):  
Xue-Peng Jin ◽  
Hong-Zhi Sun ◽  
Shuo-Wei Jin ◽  
Wan-Ming Zhao ◽  
Jing-Ren Tang ◽  
...  

Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1164
Author(s):  
Gongli Xiao ◽  
Yanping Xu ◽  
Hongyan Yang ◽  
Zetao Ou ◽  
Jianyun Chen ◽  
...  

Herein, we propose a tunable plasmonic sensor with Fano resonators in an inverted U-shaped resonator. By manipulating the sharp asymmetric Fano resonance peaks, a high-sensitivity refractive index sensor can be realized. Using the multimode interference coupled-mode theory and the finite element method, we numerically simulate the influences of geometrical parameters on the plasmonic sensor. Optimizing the structure parameters, we can achieve a high plasmonic sensor with the maximum sensitivity for 840 nm/RIUand figure of merit for 3.9 × 105. The research results provide a reliable theoretical basis for designing high sensitivity to the next generation plasmonic nanosensor.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 942
Author(s):  
Razvan Pascu ◽  
Gheorghe Pristavu ◽  
Gheorghe Brezeanu ◽  
Florin Draghici ◽  
Philippe Godignon ◽  
...  

A SiC Schottky dual-diode temperature-sensing element, suitable for both complementary variation of VF with absolute temperature (CTAT) and differential proportional to absolute temperature (PTAT) sensors, is demonstrated over 60–700 K, currently the widest range reported. The structure’s layout places the two identical diodes in close, symmetrical proximity. A stable and high-barrier Schottky contact based on Ni, annealed at 750 °C, is used. XRD analysis evinced the even distribution of Ni2Si over the entire Schottky contact area. Forward measurements in the 60–700 K range indicate nearly identical characteristics for the dual-diodes, with only minor inhomogeneity. Our parallel diode (p-diode) model is used to parameterize experimental curves and evaluate sensing performances over this far-reaching domain. High sensitivity, upwards of 2.32 mV/K, is obtained, with satisfactory linearity (R2 reaching 99.80%) for the CTAT sensor, even down to 60 K. The PTAT differential version boasts increased linearity, up to 99.95%. The lower sensitivity is, in this case, compensated by using a high-performing, low-cost readout circuit, leading to a peak 14.91 mV/K, without influencing linearity.


Sign in / Sign up

Export Citation Format

Share Document