scholarly journals Rolling Bearings Fault Diagnosis Based on Tree Heuristic Feature Selection and the Dependent Feature Vector Combined with Rough Sets

2019 ◽  
Vol 9 (6) ◽  
pp. 1161 ◽  
Author(s):  
Xiaoyue Chen ◽  
Xiaoyan Zhang ◽  
Jian Zhou ◽  
Ke Zhou

Rolling element bearings (REB) are widely used in all walks of life, and they play an important role in the health operation of all kinds of rotating machinery. Therefore, the fault diagnosis of REB has attracted substantial attention. Fault diagnosis methods based on time-frequency signal analysis and intelligent classification are widely used for REB because of their effectiveness. However, there still exist two shortcomings in these fault diagnosis methods: (1) A large amount of redundant information is difficult to identify and delete. (2) Aliasing patterns decrease the methods’ classification accuracy. To overcome these problems, this paper puts forward an improved fault diagnosis method based on tree heuristic feature selection (THFS) and the dependent feature vector combined with rough sets (RS-DFV). In the RS-DFV method, the feature set was optimized through the dependent feature vector (DFV). Furthermore, the DFV revealed the essential difference among different REB faults and improved the accuracy of fault description. Moreover, the rough set was utilized to reasonably describe the aliasing patterns and overcome the problem of abnormal termination in DFV extraction. In addition, a tree heuristic feature selection method (THFS) was devised to delete the redundant information and construct the structure of RS-DFV. Finally, a simulation, four other feature vectors, three other feature selection methods and four other fault diagnosis methods were utilized for the REB fault diagnosis to demonstrate the effectiveness of the RS-DFV method. RS-DFV obtained an effective subset of five features from 100 features, and acquired a very good diagnostic accuracy (100%, 100%, 99.51%, 100%, 99.47%, 100%), which is much higher than all comparative tests. The results indicate that the RS-DFV method could select an appropriate feature set, deeply dig the effectiveness of the features and more exactly describe the aliasing patterns. Consequently, this method performs better in REB fault diagnosis than the original intelligent methods.

2020 ◽  
Vol 10 (15) ◽  
pp. 5170
Author(s):  
José Alberto Hernández-Muriel ◽  
Jhon Bryan Bermeo-Ulloa ◽  
Mauricio Holguin-Londoño ◽  
Andrés Marino Álvarez-Meza ◽  
Álvaro Angel Orozco-Gutiérrez

Nowadays, bearings installed in industrial electric motors are constituted as the primary mode of a failure affecting the global energy consumption. Since industries’ energy demand has a growing tendency, interest for efficient maintenance in electric motors is decisive. Vibration signals from bearings are employed commonly as a non-invasive approach to support fault diagnosis and severity evaluation of rotating machinery. However, vibration-based diagnosis poses a challenge concerning the signal properties, e.g., highly dynamic and non-stationary. Here, we introduce a knowledge-based tool to analyze multiple health conditions in bearings. Our approach includes a stochastic feature selection method, termed Stochastic Feature Selection (SFS), highlighting and interpreting relevant multi-domain attributes (time, frequency, and time–frequency) related to the bearing faults discriminability. In particular, a relief-F-based ranking and a Hidden Markov Model are trained under a windowing scheme to achieve our SFS. Obtained results in a public database demonstrate that our proposal is competitive compared to state-of-the-art algorithms concerning both the number of features selected and the classification accuracy.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 65 ◽  
Author(s):  
Jingwei Too ◽  
Abdul Abdullah ◽  
Norhashimah Mohd Saad ◽  
Nursabillilah Mohd Ali

Electromyography (EMG) has been widely used in rehabilitation and myoelectric prosthetic applications. However, a recent increment in the number of EMG features has led to a high dimensional feature vector. This in turn will degrade the classification performance and increase the complexity of the recognition system. In this paper, we have proposed two new feature selection methods based on a tree growth algorithm (TGA) for EMG signals classification. In the first approach, two transfer functions are implemented to convert the continuous TGA into a binary version. For the second approach, the swap, crossover, and mutation operators are introduced in a modified binary tree growth algorithm for enhancing the exploitation and exploration behaviors. In this study, short time Fourier transform (STFT) is employed to transform the EMG signals into time-frequency representation. The features are then extracted from the STFT coefficient and form a feature vector. Afterward, the proposed feature selection methods are applied to evaluate the best feature subset from a large available feature set. The experimental results show the superiority of MBTGA not only in terms of feature reduction, but also the classification performance.


2013 ◽  
Vol 427-429 ◽  
pp. 2045-2049
Author(s):  
Chun Mei Yu ◽  
Sheng Bo Yang

To increase fault classification performance and reduce computational complexity,the feature selection process has been used for fault diagnosis.In this paper, we proposed a sparse representation based feature selection method and gave detailed procedure of the algorithm. Traditional selecting methods based on wavelet package decomposition and Bhattacharyya distance methods,and sparse methods, including sparse representation classifier, sparsity preserving projection and sparse principal component analysis,were compared to the proposed method.Simulations showed the proposed selecting method gave better performance on fault diagnosis with Tennessee Eastman Process data.


2021 ◽  
Author(s):  
tingyu jiang ◽  
Sheng Hong ◽  
Hao Liu

Abstract In order to achieve accurate fault diagnosis of rolling bearing under random noise, a new fault diagnosis method based on wavelet packet-variational mode decomposition (WP-VMD) and kernel extreme learning machine (KELM) optimized by particle swarm optimization (PSO) is proposed in this paper. Firstly, the time-frequency domain feature vectors of the original rolling bearing fault signals are effectively obtained by preprocessing of WMD and decomposition and reconstruction of VMD. Then, the extracted two-dimensional feature vector is input into the KELM neural network for fault identification, and combined with PSO, KELM parameters were optimized. The experimental results show that the proposed method can effectively diagnose the rolling bearing under random noise, with the features of fast speed, stable performance and high accuracy. By comparison, this paper obtains better accuracy and real-time performance with fewer features, which provides a simple and efficient solution for fault diagnosis of rolling bearings.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1790
Author(s):  
Zi Zhang ◽  
Hong Pan ◽  
Xingyu Wang ◽  
Zhibin Lin

Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped.


Sign in / Sign up

Export Citation Format

Share Document