scholarly journals Medical Image Segmentation with Adjustable Computational Complexity Using Data Density Functionals

2019 ◽  
Vol 9 (8) ◽  
pp. 1718
Author(s):  
Chien-Chang Chen ◽  
Meng-Yuan Tsai ◽  
Ming-Ze Kao ◽  
Henry Horng-Shing Lu

Techniques of automatic medical image segmentation are the most important methods for clinical investigation, anatomic research, and modern medicine. Various image structures constructed from imaging apparatus achieve a diversity of medical applications. However, the diversified structures are also a burden of contemporary techniques. Performing an image segmentation with a tremendously small size (<25 pixels by 25 pixels) or tremendously large size (>1024 pixels by 1024 pixels) becomes a challenge in perspectives of both technical feasibility and theoretical development. Noise and pixel pollution caused by the imaging apparatus even aggravate the difficulty of image segmentation. To simultaneously overcome the mentioned predicaments, we propose a new method of medical image segmentation with adjustable computational complexity by introducing data density functionals. Under this theoretical framework, several kernels can be assigned to conquer specific predicaments. A square-root potential kernel is used to smoothen the featured components of employed images, while a Yukawa potential kernel is applied to enhance local featured properties. Besides, the characteristic of global density functional estimation also allows image compression without losing the main image feature structures. Experiments on image segmentation showed successful results with various compression ratios. The computational complexity was significantly improved, and the score of accuracy estimated by the Jaccard index had a great outcome. Moreover, noise and regions of light pollution were mostly filtered out in the procedure of image compression.

2012 ◽  
Vol 532-533 ◽  
pp. 1578-1582
Author(s):  
Fang Wang ◽  
Juan Juan Ruan ◽  
Gang Xie

Granular Computing theory is a interesting research direction in artificial intelligence field. In this paper, granular computing theory is applied to medical image segmentation. Granularity thinking in image segmentation is expounded, and a novel medical image segmentation method is proposed. Firstly, we construct different granularities according to different features that the image contained, secondly, do the attributes combination to the obtained quotient spaces according to the quotient space granularity synthesis principle, and then complete the image segmentation. Compared with the methods adopting single image feature, this method may fully use the image information in a more effective way and may obtain better segmentation effects.


2013 ◽  
Vol 06 (04) ◽  
pp. 1350021
Author(s):  
PING ZHANG ◽  
ZHAOHUA CUI ◽  
HALE XUE ◽  
DEXUAN ZOU ◽  
LI GUO

The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in intensity inhomogeneity of the image, and with a global intensity fitting term in intensity homogeneity domain. Weighting factor is chosen to balance these two intensity fitting terms, which can be calculated automatically by local entropy. The level set regularization term is to replace contour curve to find the minimum of the energy function. Particularly, structure tensor is applied to describe the image, which overcomes the disadvantage of image feature without structure information. The experimental results show that our proposed method can segment image efficiently whether it presents intensity inhomogeneity or not and wherever the initial contour is. Moreover, compared with the Chan–Vese model and local binary fitting model, our proposed model not only handles better intensity inhomogeneity, but also is less sensitive to the location of initial contour.


2019 ◽  
Vol 31 (6) ◽  
pp. 1007 ◽  
Author(s):  
Haiou Wang ◽  
Hui Liu ◽  
Qiang Guo ◽  
Kai Deng ◽  
Caiming Zhang

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 348
Author(s):  
Choongsang Cho ◽  
Young Han Lee ◽  
Jongyoul Park ◽  
Sangkeun Lee

Semantic image segmentation has a wide range of applications. When it comes to medical image segmentation, its accuracy is even more important than those of other areas because the performance gives useful information directly applicable to disease diagnosis, surgical planning, and history monitoring. The state-of-the-art models in medical image segmentation are variants of encoder-decoder architecture, which is called U-Net. To effectively reflect the spatial features in feature maps in encoder-decoder architecture, we propose a spatially adaptive weighting scheme for medical image segmentation. Specifically, the spatial feature is estimated from the feature maps, and the learned weighting parameters are obtained from the computed map, since segmentation results are predicted from the feature map through a convolutional layer. Especially in the proposed networks, the convolutional block for extracting the feature map is replaced with the widely used convolutional frameworks: VGG, ResNet, and Bottleneck Resent structures. In addition, a bilinear up-sampling method replaces the up-convolutional layer to increase the resolution of the feature map. For the performance evaluation of the proposed architecture, we used three data sets covering different medical imaging modalities. Experimental results show that the network with the proposed self-spatial adaptive weighting block based on the ResNet framework gave the highest IoU and DICE scores in the three tasks compared to other methods. In particular, the segmentation network combining the proposed self-spatially adaptive block and ResNet framework recorded the highest 3.01% and 2.89% improvements in IoU and DICE scores, respectively, in the Nerve data set. Therefore, we believe that the proposed scheme can be a useful tool for image segmentation tasks based on the encoder-decoder architecture.


2021 ◽  
Author(s):  
Dachuan Shi ◽  
Ruiyang Liu ◽  
Linmi Tao ◽  
Zuoxiang He ◽  
Li Huo

2021 ◽  
pp. 1-19
Author(s):  
Maria Tamoor ◽  
Irfan Younas

Medical image segmentation is a key step to assist diagnosis of several diseases, and accuracy of a segmentation method is important for further treatments of different diseases. Different medical imaging modalities have different challenges such as intensity inhomogeneity, noise, low contrast, and ill-defined boundaries, which make automated segmentation a difficult task. To handle these issues, we propose a new fully automated method for medical image segmentation, which utilizes the advantages of thresholding and an active contour model. In this study, a Harris Hawks optimizer is applied to determine the optimal thresholding value, which is used to obtain the initial contour for segmentation. The obtained contour is further refined by using a spatially varying Gaussian kernel in the active contour model. The proposed method is then validated using a standard skin dataset (ISBI 2016), which consists of variable-sized lesions and different challenging artifacts, and a standard cardiac magnetic resonance dataset (ACDC, MICCAI 2017) with a wide spectrum of normal hearts, congenital heart diseases, and cardiac dysfunction. Experimental results show that the proposed method can effectively segment the region of interest and produce superior segmentation results for skin (overall Dice Score 0.90) and cardiac dataset (overall Dice Score 0.93), as compared to other state-of-the-art algorithms.


Author(s):  
Zhenzhen Yang ◽  
Pengfei Xu ◽  
Yongpeng Yang ◽  
Bing-Kun Bao

The U-Net has become the most popular structure in medical image segmentation in recent years. Although its performance for medical image segmentation is outstanding, a large number of experiments demonstrate that the classical U-Net network architecture seems to be insufficient when the size of segmentation targets changes and the imbalance happens between target and background in different forms of segmentation. To improve the U-Net network architecture, we develop a new architecture named densely connected U-Net (DenseUNet) network in this article. The proposed DenseUNet network adopts a dense block to improve the feature extraction capability and employs a multi-feature fuse block fusing feature maps of different levels to increase the accuracy of feature extraction. In addition, in view of the advantages of the cross entropy and the dice loss functions, a new loss function for the DenseUNet network is proposed to deal with the imbalance between target and background. Finally, we test the proposed DenseUNet network and compared it with the multi-resolutional U-Net (MultiResUNet) and the classic U-Net networks on three different datasets. The experimental results show that the DenseUNet network has significantly performances compared with the MultiResUNet and the classic U-Net networks.


Sign in / Sign up

Export Citation Format

Share Document