scholarly journals Measurement of Elastic Properties of Brittle Materials by Ultrasonic and Indentation Methods

2019 ◽  
Vol 9 (10) ◽  
pp. 2067 ◽  
Author(s):  
Shih-Jeh Wu ◽  
Pei-Chieh Chin ◽  
Hawking Liu

The measurements of acoustic properties of three brittle materials i.e., ITO (alkaline earth boro-aluminosilicate) glass, bulk metallic glass (BMG) and nickel-based superalloy (CM247LC) are conducted in this work to obtain various properties. The elastic moduli of materials are derived from the results by simple acoustic speed-elasticity relationship and compared with the data obtained with nanoindentation. The difference between the Young’s modulus of ITO glass by ultrasonic and nanoindentation is 0.83%, a perfect match within range error. As for BMG, the difference (Young’s modulus) is 23.59%, and 5.11% for the CM247LC superalloys. The pulse-echo method proves to be reliable for homogeneous amorphous glass, however, the elastic moduli of metallic glass and CM247LC superalloy by ultrasonic are quite different from those by nanoindentation. The difference is large enough to cover the maximal error associated with the nanoindentation method. The relationship of acoustic speed and elastic constants must be reviewed in dealing with compound materials.

Author(s):  
Osama Siddig ◽  
Salaheldin Elkatatny

AbstractRock mechanical properties play a crucial role in fracturing design, wellbore stability and in situ stresses estimation. Conventionally, there are two ways to estimate Young’s modulus, either by conducting compressional tests on core plug samples or by calculating it from well log parameters. The first method is costly, time-consuming and does not provide a continuous profile. In contrast, the second method provides a continuous profile, however, it requires the availability of acoustic velocities and usually gives estimations that differ from the experimental ones. In this paper, a different approach is proposed based on the drilling operational data such as weight on bit and penetration rate. To investigate this approach, two machine learning techniques were used, artificial neural network (ANN) and support vector machine (SVM). A total of 2288 data points were employed to develop the model, while another 1667 hidden data points were used later to validate the built models. These data cover different types of formations carbonate, sandstone and shale. The two methods used yielded a good match between the measured and predicted Young’s modulus with correlation coefficients above 0.90, and average absolute percentage errors were less than 15%. For instance, the correlation coefficients for ANN ranged between 0.92 and 0.97 for the training and testing data, respectively. A new empirical correlation was developed based on the optimized ANN model that can be used with different datasets. According to these results, the estimation of elastic moduli from drilling parameters is promising and this approach could be investigated for other rock mechanical parameters.


Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ugai Watanabe ◽  
Minoru Fujita ◽  
Misato Norimoto

Summary The relationship between transverse Young's moduli and cell shapes in coniferous early wood was investigated using cell models constructed by two dimensional power spectrum analysis. The calculated values of tangential Young's modulus qualitatively explained the relationship between experimental values and density as well as the difference in experimental values among species. The calculated values of radial Young's modulus for the species having hexagonal cells agreed well with the experimental values, whereas, for the species having square cells, the calculated values were much larger than the experimental values. This result was ascribed to the fact that the bending moment on the radial cell wall of square cell models was calculated to be small. It is suggested that the asymmetrical shape of real wood cells or the behavior of nodes during ell deformation is an important factor in the mechanism of linear elastic deformation of wood cells.


Holzforschung ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 941-948 ◽  
Author(s):  
Hiroshi Yoshihara

Abstract The flexural Young’s modulus of western hemlock, medium-density fiberboard, and 5-plywood (made of lauan) has been determined by conducting three- and four-point bending tests with various span lengths and by flexural vibration test. The Young’s modulus was significantly influenced by the deflection measurement method. In particular, the Young’s modulus was not reliable based on the difference between the deflections at two specific points in the specimen, although this test is standardized according to ISO 3349-1975 and JIS Z2101-2009.


Author(s):  
Fumitada Iguchi ◽  
Hiromichi Kitahara ◽  
Hiroo Yugami

The mechanical properties of Ni-YSZ cermets at high temperature in reduction atmosphere were evaluated by the four points bending method. We studied the influences of reduction and thermal cycles, i.e. a cycle from R.T. to 800°C, to flexural strength and Young’s modulus. The flexural strength of Ni-YSZ at room temperature was lower than that of NiO-YSZ by about 10 to 20% mainly caused by the increment of porosity. But, the flexural strength of Ni-YSZ at 800°C was drastically decreased by an half of that at R.T. In addition, the stress–strain diagram of Ni-YSZ at 800°C indicated that it showed weak ductility. The maximum observed strain was over 0.5% at 30MPa. On the contrary, NiO-YSZ showed only brittlely at 800°C. The difference was caused by Ni metal in the Ni-YSZ cermets. Therefore, it was expected that Ni-YSZ is easily deformed in operation, though residual stress between an anode and an electrolyte was low. The influence of thermal cycles to flexural strength and Young’s modulus was not observed clearly. At the same time, the differences of microstructure were not observed. Therefore, it was concluded that the cycle does not change mechanical properties significantly.


2011 ◽  
Vol 509 (7) ◽  
pp. 3269-3273 ◽  
Author(s):  
Z.Y. Liu ◽  
Y. Yang ◽  
S. Guo ◽  
X.J. Liu ◽  
J. Lu ◽  
...  

2020 ◽  
Author(s):  
Elisabeth Bemer ◽  
Noalwenn Dubos-Sallée ◽  
Patrick N. J. Rasolofosaon

<p>The differences between static and dynamic elastic moduli remain a controversial issue in rock physics. Various empirical correlations can be found in the literature. However, the experimental methods used to derive the static and dynamic elastic moduli differ and may entail substantial part of the discrepancies observed at the laboratory scale. The representativeness and bias of these methods should be fully assessed before applying big data analytics to the numerous datasets available in the literature.</p><p>We will illustrate, discuss and analyze the differences inherent to static and dynamic measurements through a series of triaxial and petroacoustic tests performed on an outcrop carbonate. The studied rock formation is Euville limestone, which is a crinoidal grainstone composed of roughly 99% calcite and coming from Meuse department located in Paris Basin. Sister plugs have been cored from the same quarry block and observed under CT-scanner to check their homogeneity levels.</p><p>The triaxial device is equipped with an internal stress sensor and provides axial strain measurements both from strain gauges glued to the samples and LVDTs placed inside the confinement chamber. Two measures of the static Young's modulus can thus be derived: the first one from the local strain measurements provided by the strain gauges and the second one from the semi-local strain measurements provided by the LVDTs. The P- and S-wave velocities are measured both through first break picking and the phase spectral ratio method, providing also two different measures of the dynamic Young's modulus.</p><p>The triaxial tests have been performed in drained conditions and the measured static elastic moduli correspond to drained elastic moduli. The petroacoustic tests have been performed using the fluid substitution method, which consists in measuring the acoustic velocities for various saturating fluids of different bulk modulus. No weakening or dispersion effects have been observed. Gassmann's equation can then be used to derive the dynamic drained elastic moduli and the solid matrix bulk modulus, which is otherwise either taken from the literature for pure calcite or dolomite samples, or computed using Voigt-Reuss-Hill or Hashin-Shtrikman averaging of the mineral constituents.</p><p>For the studied carbonate formation, we obtain similar values for static and dynamic elastic moduli when derived from careful lab experiments. Based on the obtained results, we will finally make recommendations, emphasizing the necessity of using relevant experimental techniques for a consistent characterization of the relation between static and dynamic elastic moduli.</p>


Author(s):  
Khalid I. Alzebdeh

The mechanical behaviour of a single-layer nanostructured graphene sheet is investigated using an atomistic-based continuum model. This is achieved by equating the stored energy in a representative unit cell for a graphene sheet at atomistic scale to the strain energy of an equivalent continuum medium under prescribed boundary conditions. Proper displacement-controlled (essential) boundary conditions which generate a uniform strain field in the unit cell model are applied to calculate one elastic modulus at a time. Three atomistic finite element models are adopted with an assumption that force interactions among carbon atoms can be modeled by either spring-like or beam elements. Thus, elastic moduli for graphene structure are determined based on the proposed modeling approach. Then, effective Young’s modulus and Poisson’s ratio are extracted from the set of calculated elastic moduli. Results of Young’s modulus obtained by employing the different atomistic models show a good agreement with the published theoretical and numerical predictions. However, Poisson’s ratio exhibits sensitivity to the considered atomistic model. This observation is supported by a significant variation in estimates as can be found in the literature. Furthermore, isotropic behaviour of in-plane graphene sheets was validated based on current modeling.


Sign in / Sign up

Export Citation Format

Share Document