Differences between static and dynamic elastic moduli: Importance of experimental methods

Author(s):  
Elisabeth Bemer ◽  
Noalwenn Dubos-Sallée ◽  
Patrick N. J. Rasolofosaon

<p>The differences between static and dynamic elastic moduli remain a controversial issue in rock physics. Various empirical correlations can be found in the literature. However, the experimental methods used to derive the static and dynamic elastic moduli differ and may entail substantial part of the discrepancies observed at the laboratory scale. The representativeness and bias of these methods should be fully assessed before applying big data analytics to the numerous datasets available in the literature.</p><p>We will illustrate, discuss and analyze the differences inherent to static and dynamic measurements through a series of triaxial and petroacoustic tests performed on an outcrop carbonate. The studied rock formation is Euville limestone, which is a crinoidal grainstone composed of roughly 99% calcite and coming from Meuse department located in Paris Basin. Sister plugs have been cored from the same quarry block and observed under CT-scanner to check their homogeneity levels.</p><p>The triaxial device is equipped with an internal stress sensor and provides axial strain measurements both from strain gauges glued to the samples and LVDTs placed inside the confinement chamber. Two measures of the static Young's modulus can thus be derived: the first one from the local strain measurements provided by the strain gauges and the second one from the semi-local strain measurements provided by the LVDTs. The P- and S-wave velocities are measured both through first break picking and the phase spectral ratio method, providing also two different measures of the dynamic Young's modulus.</p><p>The triaxial tests have been performed in drained conditions and the measured static elastic moduli correspond to drained elastic moduli. The petroacoustic tests have been performed using the fluid substitution method, which consists in measuring the acoustic velocities for various saturating fluids of different bulk modulus. No weakening or dispersion effects have been observed. Gassmann's equation can then be used to derive the dynamic drained elastic moduli and the solid matrix bulk modulus, which is otherwise either taken from the literature for pure calcite or dolomite samples, or computed using Voigt-Reuss-Hill or Hashin-Shtrikman averaging of the mineral constituents.</p><p>For the studied carbonate formation, we obtain similar values for static and dynamic elastic moduli when derived from careful lab experiments. Based on the obtained results, we will finally make recommendations, emphasizing the necessity of using relevant experimental techniques for a consistent characterization of the relation between static and dynamic elastic moduli.</p>

Author(s):  
A. Perbawa ◽  
E. Gramajo ◽  
T. Finkbeiner ◽  
J. C. Santamarina

AbstractAccurate stress–strain measurements in triaxial tests are critical to compute reliable mechanical parameters. We focus on compliance at the interfaces between the specimen and endcaps, and test specimens under various triaxial conditions using different instrumentation protocols. The tested materials include aluminum, Eagle Ford shale, Berea sandstone, and Jubaila carbonate. Results obtained following common practice reveal that surface roughness at the specimen-endcap interfaces leads to marked seating effects, affects all cap-to-cap based measurements and hinders ultrasonic energy transmission. In particular, cap-to-cap deformation measurements accentuate hysteretic behavior, magnify biases caused by bending and tilting (triggered by uneven surfaces and misalignment), and affect the estimation of all rock parameters, from stiffness to Biot’s α-parameter. Higher confining pressure diminishes seating effects. Local measurements using specimen-bonded strain gauges are preferred (Note: mounting strain gauges on sleeves is ill-advised). We confirm that elastic moduli derived from wave propagation measurements are higher than quasi-static moduli determined from local strain measurements using specimen-bonded strain gauges, probably due to the lower strain level in wave propagation and preferential high-velocity travel path for first arrivals.


Author(s):  
Osama Siddig ◽  
Salaheldin Elkatatny

AbstractRock mechanical properties play a crucial role in fracturing design, wellbore stability and in situ stresses estimation. Conventionally, there are two ways to estimate Young’s modulus, either by conducting compressional tests on core plug samples or by calculating it from well log parameters. The first method is costly, time-consuming and does not provide a continuous profile. In contrast, the second method provides a continuous profile, however, it requires the availability of acoustic velocities and usually gives estimations that differ from the experimental ones. In this paper, a different approach is proposed based on the drilling operational data such as weight on bit and penetration rate. To investigate this approach, two machine learning techniques were used, artificial neural network (ANN) and support vector machine (SVM). A total of 2288 data points were employed to develop the model, while another 1667 hidden data points were used later to validate the built models. These data cover different types of formations carbonate, sandstone and shale. The two methods used yielded a good match between the measured and predicted Young’s modulus with correlation coefficients above 0.90, and average absolute percentage errors were less than 15%. For instance, the correlation coefficients for ANN ranged between 0.92 and 0.97 for the training and testing data, respectively. A new empirical correlation was developed based on the optimized ANN model that can be used with different datasets. According to these results, the estimation of elastic moduli from drilling parameters is promising and this approach could be investigated for other rock mechanical parameters.


1976 ◽  
Vol 40 (4) ◽  
pp. 508-513 ◽  
Author(s):  
S. J. Lai-Fook ◽  
T. A. Wilson ◽  
R. E. Hyatt ◽  
J. R. Rodarte

The elastic constants of dog lungs were determined at various degrees of inflation. In one set of experiments, the lobes were subjected to deformations that approximated the conditions of uniaxial loading. These data, together with the bulk modulus data obtained from the local slope of the pressure-volume curve, were used to determine the two elastic moduli that are needed to describe small nonuniform deformations about an initial state of uniform inflation. The bulk modulus was approximately 4 times the inflation pressure, and Young's modulus was approximately 1.5 times the inflation pressure. In a second set of experiments, lobes were subjected to indentation tests using cylindric punches 1–3 cm in diameter. The value for Young's modulus obtained from these data was slightly higher, approximately twice the inflation pressure. These experiments indicate that the lung is much more easily deformable in shear than in dilatation and that the Poisson ratio for the lung is high, approximately 0.43.


2015 ◽  
Vol 245 ◽  
pp. 14-18
Author(s):  
Mary A. Chibisova ◽  
Andrey N. Chibisov

This paper deals with the elastic properties of pure and nitrogen-doped silicene using density functional theory. During the compression (tension) from –2 to 2 GPa of pure and nitrogen-doped silicene, the corresponding values for the bulk modulus are obtained. It is found that the doping of the silicene structure with nitrogen has practically no effect on the value of its bulk modulus. However, the Young's modulus is increased of about 1.25 times.


Author(s):  
Khalid I. Alzebdeh

The mechanical behaviour of a single-layer nanostructured graphene sheet is investigated using an atomistic-based continuum model. This is achieved by equating the stored energy in a representative unit cell for a graphene sheet at atomistic scale to the strain energy of an equivalent continuum medium under prescribed boundary conditions. Proper displacement-controlled (essential) boundary conditions which generate a uniform strain field in the unit cell model are applied to calculate one elastic modulus at a time. Three atomistic finite element models are adopted with an assumption that force interactions among carbon atoms can be modeled by either spring-like or beam elements. Thus, elastic moduli for graphene structure are determined based on the proposed modeling approach. Then, effective Young’s modulus and Poisson’s ratio are extracted from the set of calculated elastic moduli. Results of Young’s modulus obtained by employing the different atomistic models show a good agreement with the published theoretical and numerical predictions. However, Poisson’s ratio exhibits sensitivity to the considered atomistic model. This observation is supported by a significant variation in estimates as can be found in the literature. Furthermore, isotropic behaviour of in-plane graphene sheets was validated based on current modeling.


2020 ◽  
Vol 15 (8) ◽  
pp. 2075-2088 ◽  
Author(s):  
Lukas Knittel ◽  
Torsten Wichtmann ◽  
Andrzej Niemunis ◽  
Gerhard Huber ◽  
Edgar Espino ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 1571-1578
Author(s):  
Zai Gao Huang

The mechanical and thermodynamic properties of Al2Ca and Mg2Ca in the pressure range of 0~100 Gpa were investigated using first-principles calculations. The structural parameters, such as lattice constant ratio, unit cell volume ratio, density, were investigated. The calculated elastic constants satisfy the born’s stability criterion, indicating that they are mechanically stable at normal and high pressure. Mechanical parameters such as bulk modulus, shear modulus, and Young’s modulus of polycrystalline materials have been derived from single-crystal elastic constants. The Poisson’s ratio and anisotropy were investigated. The results show that the B/G value of Mg2Ca is greater than 1.75, indicating it is a ductile phase under various pressures. When the pressure was equal to 40 Gpa, Al2Ca was transferred brittle to toughness, and the bulk modulus, shear modulus, and Young’s modulus of Al2Ca were all larger than those of Mg2Ca, indicating that the comprehensive mechanical properties of Al2Ca are better than those of Mg2Ca. The constant heat capacity obtained by the quasi-harmonic approximation indicates that the ability of Mg2Ca to release or store heat is greater than that of Al2Ca. Moreover, the coefficient of thermal expansion (α) increases exponentially at lower temperatures and linearly at higher temperatures for both alloys.


Sign in / Sign up

Export Citation Format

Share Document