scholarly journals Remarkably Facile Preparation of Superhydrophobic Functionalized Bismuth Trioxide (Bi2O3) Coatings

2019 ◽  
Vol 9 (13) ◽  
pp. 2653 ◽  
Author(s):  
Tao-tao Liang ◽  
Xiao-gang Guo

Herein, a novel superhydrophobic functionalized nano-Bi2O3 coating is designed and fabricated using electrophoretic assembly deposition (EAD) in the optimal suspension of polyethylene glycol, ethanol, acetylacetone, and surface functionalization. The small size (70 nm, nano-scale) of Bi2O3 particles and uniform distribution make the target film possessing a promising structure for realizing hydrophobic functionalization. Moreover, the hydrophobicity and stability results indicate that the product has a high-water contact angle (CA) of ca. 167° and is kept almost stable after 180 days exposure in the natural environment. These findings will provide new insight into a better design of superhydrophobic functional coatings via this facile method, holding great promise for future various applications.

Author(s):  
Wei Lee Lim ◽  
Shiplu Roy Chowdhury ◽  
Min Hwei Ng ◽  
Jia Xian Law

Tissue-engineered substitutes have shown great promise as a potential replacement for current tissue grafts to treat tendon/ligament injury. Herein, we have fabricated aligned polycaprolactone (PCL) and gelatin (GT) nanofibers and further evaluated their physicochemical properties and biocompatibility. PCL and GT were mixed at a ratio of 100:0, 70:30, 50:50, 30:70, 0:100, and electrospun to generate aligned nanofibers. The PCL/GT nanofibers were assessed to determine the diameter, alignment, water contact angle, degradation, and surface chemical analysis. The effects on cells were evaluated through Wharton’s jelly-derived mesenchymal stem cell (WJ-MSC) viability, alignment and tenogenic differentiation. The PCL/GT nanofibers were aligned and had a mean fiber diameter within 200–800 nm. Increasing the GT concentration reduced the water contact angle of the nanofibers. GT nanofibers alone degraded fastest, observed only within 2 days. Chemical composition analysis confirmed the presence of PCL and GT in the nanofibers. The WJ-MSCs were aligned and remained viable after 7 days with the PCL/GT nanofibers. Additionally, the PCL/GT nanofibers supported tenogenic differentiation of WJ-MSCs. The fabricated PCL/GT nanofibers have a diameter that closely resembles the native tissue’s collagen fibrils and have good biocompatibility. Thus, our study demonstrated the suitability of PCL/GT nanofibers for tendon/ligament tissue engineering applications.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jixi Zhang ◽  
Ligui Zhang ◽  
Xiao Gong

In this work, we prepare a PDMS-SiO2-PDA@fabric with high water contact angle (WCA=155o). Combining dopamine self-polymerization and sol-gel method, SiO2 is in situ grown on a PDA-modified fabric surface to...


2009 ◽  
Vol 620-622 ◽  
pp. 741-744 ◽  
Author(s):  
Rui Weng ◽  
Chong Rui Wang ◽  
Lian Meng Zhang ◽  
Shui Ping Wang

Fluoralkylpolysiloxane modified Polyurethane (FSPU) films with high water contact angle (CA) were prepared. fluoralkylpolysiloxane was obtained using perfluoro octyl sulfuryl fluoride and terminal amino-silicone oil as reactants. Then, the isocyanate end capped PU prepolymer was synthesized by reacting isocyanate with a soft segment mixed by active amino-end-capping fluoralkylpolysiloxane and polyether glycol. The fluoralkylpolysiloxane modified PU films were obtained after the PU prepolymer was cured by 3,3 '- dichloro -4,4' – amino - diphenyl methane (MOCA). The results showed that the modified polyurethane with 10% (mass fraction) PFATPS had a good compatibility, low surface energy, surface water contact angle and surface oil contact angle was improved by 49° and 37° respectively, and heat resistance, water resistance was apparently improved.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2474 ◽  
Author(s):  
Hao Wu ◽  
Hao Li ◽  
Ahmad Umar ◽  
Yao Wang ◽  
Guofu Zhou

Fluoropolymers play an essential role in electrowetting (EW) systems. However, no fluoropolymer possesses the desirable properties of both hydrophobicity and dielectric strength. In this study, for the first time, we report the integration of two representative fluoropolymers—namely, Teflon AF (AF 1600X) and Cytop (Cytop 809A)—into one bifunctionalized dielectric nanolayer. Within this nanolayer, both the superior hydrophobicity of Teflon AF and the excellent dielectric strength of Cytop were able to be retained. Each composed of a 0.5 μm Cytop bottom layer and a 0.06 μm Teflon AF top layer, the fabricated composite nanolayers showed a high withstand voltage of ~70 V (a dielectric strength of 125 V/μm) and a high water contact angle of ~120°. The electrowetting and dielectric properties of various film thicknesses were also systemically investigated. Through detailed study, it was observed that the thicker Teflon AF top layers produced no obvious enhancement of the Cytop/Teflon AF stack.


2008 ◽  
Vol 1132 ◽  
Author(s):  
Mehdi Shafiei ◽  
Ahmet T. Alpas

ABSTRACTA new method to fabricate superhydrophobic hard films is described. Surface texture of lotus leaf was replicated on an acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm and a hardness of 4.42 GPa was electrodeposited. The surface texture consisted of conical protuberances with a height of 10.0 ± 2.0 0m and a tip radius of 2.5 ± 0.5 0m. An additional electrodeposition for 120 s and 300 s was used to locally modify the surface structure by depositing ‘Ni crowns' on the protuberances that increased their height to 14.0 ± 2.0 0m and their tip radius to 6.0 ± 0.5 0m. The modified structures were then treated with a perfluoropolyether (PFPE) solution, which provided a high water contact angle of 156°, i.e., comparable to the naturally superhydrophobic lotus leaf. The increased hydrophobicity as a result of surface structure and chemistry modifications was evident compared to a smooth NC Ni sample, which had a contact angle of 64°.


Author(s):  
Konstantinos Ritos ◽  
Nishanth Dongari ◽  
Yonghao Zhang ◽  
Jason M. Reese

We report molecular dynamics (MD) simulations of the dynamic wetting of nanoscale droplets on moving surfaces. The dynamic water contact angle and contact angle hysteresis are measured as a function of capillary number on smooth silicon and graphite surfaces. The hydrogen bonding and density profile variations are also reported, and the width of the water depletion layer is evaluated for droplets on three different static surfaces: silicon, graphite and a fictitious super-hydrophobic surface. Our results show that molecular displacements at the contact line are mostly influenced by interactions with the solid surface, while the viscous dissipation effects induced through the movement of surfaces are found to be negligible, especially for hydrophobic surfaces. This finding is in contrast with the wetting dynamics of macroscale droplets, which show significant dependence on the capillary number. This study may yield new insight into surface-wettability characteristics of nano droplets, in particular, developing new boundary conditions for continuum solvers for liquid flows in micro- and nanoscale devices.


2017 ◽  
Vol 9 (27) ◽  
pp. 23246-23254 ◽  
Author(s):  
Mei Chen ◽  
Wei Hu ◽  
Xiao Liang ◽  
Cheng Zou ◽  
Fasheng Li ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 78791-78794 ◽  
Author(s):  
Thamodaran Partheeban ◽  
Marappan Sathish

Super-hydrophobic fullerene octahedron and flower-like microcrystals with a high water contact angle of 158.8° were prepared using anisole and IPA in a liquid–liquid interfacial precipitation method.


Holzforschung ◽  
1999 ◽  
Vol 53 (3) ◽  
pp. 318-326 ◽  
Author(s):  
A. R. Denes ◽  
M. A. Tshabalala ◽  
R. Rowell ◽  
F. Denes ◽  
R.A. Young

Summary Southern yellow pine wood surfaces were modified under cold plasma conditions in order to create water repellent characteristics. The surface chemistry of the plasma “polymerized” hexamethyldisiloxane (PHMDSO) deposited onto wood surfaces was investigated using Electron Spectroscopy for Chemical Analysis (ESCA) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). The presence of a crosslinked macromolecular structure, based on Si-O-Si and Si-O-C linkages was detected. Pyrolysis Mass Spectroscopy (MS) was carried out to investigate the nature of the building blocks of the plasma generated macromolecular structure. Plasma modified samples exhibited very high water contact angle values (contact angle = 130 degrees) in comparison to the unmodified samples (contact angle ≤ 15 degrees), indicating the presence of a hydrophobic surface. Atomic Force Microscopy (AFM) images, collected both from unmodified and HMDSO-plasma modified samples, indicate the progressive growth of the plasma “polymer”, resulting in the deposition of a smooth layer at 10 minutes treatment time. Differential Thermal Analysis (DTA) indicated high thermal stability of the PHMDSO.


Sign in / Sign up

Export Citation Format

Share Document