scholarly journals 3D and Boundary Effects on 2D Electrical Resistivity Tomography

2019 ◽  
Vol 9 (15) ◽  
pp. 2963 ◽  
Author(s):  
Yin-Chun Hung ◽  
Chih-Ping Lin ◽  
Chin-Tan Lee ◽  
Ko-Wei Weng

Electrical resistivity tomography (ERT) is one of the most widely used geophysical methods in geological, hydrogeological, and geo-environmental investigations. Although 3D ERT is now available, 2D ERT remains state-of-the-practice due to its simplicity in fieldwork and lower space requirements. 2D ERT assumes that the ground condition is perpendicular to the survey line and outside the survey line is homogeneous. This assumption can often be violated in conditions such as geologic strikes not perpendicular to the survey line and topographic changes or buried objects near the survey line. Possible errors or artifacts in the 2D resistivity tomogram arising from violating the 2D assumption are often overlooked. This study aimed to numerically investigate the boundary effects on 2D ERT under various simplified conditions. Potential factors including resistivity contrast, depth and size of buried objects, and electrode spacing were considered for the parametric studies. The results revealed that offline geologic features may project onto the 2D tomogram to some extent, depending on the aforementioned factors. The mechanism and implications of boundary effects can be drawn from these parametric studies.

2021 ◽  
Vol 11 (6) ◽  
pp. 2448
Author(s):  
Alex Sendrós ◽  
Aritz Urruela ◽  
Mahjoub Himi ◽  
Carlos Alonso ◽  
Raúl Lovera ◽  
...  

Water percolation through infiltration ponds is creating significant synergies for the broad adoption of water reuse as an additional non-conventional water supply. Despite the apparent simplicity of the soil aquifer treatment (SAT) approaches, the complexity of site-specific hydrogeological conditions and the processes occurring at various scales require an exhaustive understanding of the system’s response. The non-saturated zone and underlying aquifers cannot be considered as a black box, nor accept its characterization from few boreholes not well distributed over the area to be investigated. Electrical resistivity tomography (ERT) is a non-invasive technology, highly responsive to geological heterogeneities that has demonstrated useful to provide the detailed subsurface information required for groundwater modeling. The relationships between the electrical resistivity of the alluvial sediments and the bedrock and the difference in salinity of groundwater highlight the potential of geophysical methods over other more costly subsurface exploration techniques. The results of our research show that ERT coupled with implicit modeling tools provides information that can significantly help to identify aquifer geometry and characterize the saltwater intrusion of shallow alluvial aquifers. The proposed approaches could improve the reliability of groundwater models and the commitment of stakeholders to the benefits of SAT procedures.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. B231-B239 ◽  
Author(s):  
Jonathan E. Chambers ◽  
Oliver Kuras ◽  
Philip I. Meldrum ◽  
Richard D. Ogilvy ◽  
Jonathan Hollands

A former dolerite quarry and landfill site was investigated using 2D and 3D electrical resistivity tomography (ERT), with the aims of determining buried quarry geometry, mapping bedrock contamination arising from the landfill, and characterizing site geology. Resistivity data were collected from a network of intersecting survey lines using a Wenner-based array configuration. Inversion of the data was carried out using 2D and 3D regularized least-squares optimization methods with robust (L1-norm) model constraints. For this site, where high resistivity contrasts were present, robust model constraints produced a more accurate recovery of subsurface structures when compared to the use of smooth (L2-norm) constraints. Integrated 3D spatial analysis of the ERT and conventional site investigation data proved in this case a highly effective means of characterizing the landfill and its environs. The 3D resistivity model was successfully used to confirm the position of the landfill boundaries, which appeared as electrically well-defined features that corresponded extremely closely to both historic maps and intrusive site investigation data. A potential zone of leachate migration from the landfill was identified from the electrical models; the location of this zone was consistent with the predicted direction of groundwater flow across the site. Unquarried areas of a dolerite sill were imaged as a resistive sheet-like feature, while the fault zone appeared in the 2D resistivity model as a dipping structure defined by contrasting bedrock resistivities.


Author(s):  
O. F. Ogunlana ◽  
O. M. Alile ◽  
O. J. Airen

The Electrical Resistivity Tomography (ERT) data was acquired within the area suspected to have high potential for bitumen occurrence using the Wenner-Schlumberger configuration in Agbabu, southwestern Nigeria. PASI 16GL-N Earth resistivity meter instrument was used to acquire data along five (5) traverses with 5m electrode spacing and traverses length of 150m. The apparent resistivity values obtained was processed using RES2DINV software which helped to automatically obtain the 2D inversion model of the subsurface. This study has shown the occurrence of bitumen between the depth of 13.4m and 9.93m for Traverses 1, 2, 3 and Traverses 4, 5 respectively in a 2-Dimensional electrical resistivity images for boreholes with a depth of about 18m. The results indicate that the bitumen is characterized by good lateral continuity and is sufficiently thick for commercial exploitation.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2400
Author(s):  
Alex Sendrós ◽  
Mahjoub Himi ◽  
Esmeralda Estévez ◽  
Raúl Lovera ◽  
M. Pino Palacios-Diaz ◽  
...  

The geometry and the hydraulic properties of the unsaturated zone is often difficult to evaluate from traditional soil sampling techniques. Soil samples typically provide only data of the upper layers and boreholes are expensive and only provide spotted information. Non-destructive geophysical methods and among them, electrical resistivity tomography can be applied in complex geological environments such as volcanic areas, where lavas and unconsolidated pyroclastic deposits dominate. They have a wide variability of hydraulic properties due to textural characteristics and modification processes suh as compaction, fracturation and weathering. To characterize the subsurface geology below the golf course of Bandama (Gran Canaria) a detailed electrical resistivity tomography survey has been conducted. This technique allowed us to define the geometry of the geological formations because of their high electrical resistivity contrasts. Subsequently, undisturbed soil and pyroclastic deposits samples were taken in representative outcrops for quantifying the hydraulic conductivity in the laboratory where the parametric electrical resistivity was measured in the field. A statistical correlation between the two variables has been obtained and a 3D model transit time of water infiltration through the vadose zone has been built to assess the vulnerability of the aquifers located below the golf course irrigated with reclaimed water.


2020 ◽  
Author(s):  
Laurent Gourdol ◽  
Rémi Clément ◽  
Jérôme Juilleret ◽  
Laurent Pfister ◽  
Christophe Hissler

Abstract. Within the Critical Zone, regolith plays a key role in the fundamental hydrological functions of water collection, storage, mixing and release. Electrical Resistivity Tomography (ERT) is recognized as a remarkable tool for characterizing the geometry and properties of the regolith, overcoming limitations inherent to conventional borehole-based investigations. For exploring shallow layers, a small electrode spacing (ES) will provide a denser set of apparent resistivity measurements of the subsurface. As this option is cumbersome and time-consuming, smaller ES – albeit offering poorer shallow apparent resistivity data – are often preferred for large horizontal ERT surveys. To investigate the negative trade-off between larger ES and reduced accuracy of the inverted ERT images for shallow layers, we use a set of synthetic conductive/resistive/conductive three-layered soil–saprock/saprolite–bedrock models in combination with a reference field dataset. Our results suggest that an increase in ES causes a deterioration of the accuracy of the inverted ERT images in terms of both resistivity distribution and interface delineation and, most importantly, that this degradation increases sharply when the ES exceeds the thickness of the top subsurface layer. This finding, which is obvious for the characterization of shallow layers, is also relevant even when solely aiming for the characterization of deeper layers. We show that an oversized ES leads to overestimations of depth to bedrock and that this overestimation is even more important for subsurface structures with high resistivity contrast. To overcome this limitation, we propose adding interpolated levels of surficial apparent resistivity relying on a limited number of ERT profiles with a smaller ES. We demonstrate that our protocol significantly improves the accuracy of ERT profiles when using large ES, provided that the top layer has a rather constant thickness and resistivity. For the specific case of large-scale ERT surveys the proposed upgrading procedure is cost-effective in comparison to protocols based on small ES.


2022 ◽  
Vol 8 (1) ◽  
pp. 39-44
Author(s):  
Evi Fazriati ◽  
Asep Purnama ◽  
Gian Agistian Algifari ◽  
Irene Siti Amilah Muslimah ◽  
Fitria Hapsari Puteri Sumanto ◽  
...  

The existence of trees is very beneficial for humans’ life. There are utilizations of tree such as urban planning and reforestation. However, the tree can be dangerous when the tree is aged and decay because of several factors that might be cause fallen tree. Furthermore, the monitoring activity is needed to know the condition of the tree. One of the methods that can be used to detect hollow in living tree is Electrical Resistivity Tomography (ERT). The ERT is an efficient and nondestructive method that can be potential to estimate resistivity cross section. The measurement of ERT conducted on Swietenia mahagoni and Gmelina with unhealthy and healthy condition visually. The data processed using Res2Dinv and reconstructed for obtaining 2D resistivity cross section. The results shows that the unhealthy Swietenia mahagoni has logarithmic resistivity value range between 0.1-1 Ωm and the healthy Swietenia mahagoni has 1-4 Ωm. Meanwhile, the unhealthy and healthy Gmelina has logarithmic resistivity value range between 0.5-4.5 Ωm and 0.5-3 Ωm, respectively. It is shows that the tree indicated health visually from biological view does not mean the tree is decay. It might be influenced by phenology factor and/or the species of the tree.


2017 ◽  
Vol 11 (6) ◽  
pp. 2957-2974 ◽  
Author(s):  
Benjamin Mewes ◽  
Christin Hilbich ◽  
Reynald Delaloye ◽  
Christian Hauck

Abstract. Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.


2018 ◽  
Vol 19 (1) ◽  
pp. 24-34
Author(s):  
Budy Santoso

Bungaya Kangin Village, Bebandem District, Karangasem Regency, Bali Province consists of paddy fields and settlements, required therefore a water source / aquifer  that can meet all these needs. One of the Geophysical Methods that can identify the aquifer is the Geoelectric Method. Geoelectric method used in this research is Resistivity Method. Data acquisition using Vertical Electrical Sounding (VES) and Electrical Resistivity Tomography (ERT) Methods. VES method is a method of measurement to determine the variation of resistivity vertically at one point. Electrical Resistivity Tomography (ERT) method is a method of measuring resistivity on soil surface / rock by using many electrode (51 electrode), to obtain sub-surface resistivity variation  lateraly and verticaly, to obtain sub-surface image. The equipment used for geoelectric measurements is  Resistivity Meter of Naniura NRD 300 Hf which has been equipped with a switchbox to adjust the displacement of 51 electrodes. Based on the resistivity modeling results, the aquifers in the study area were found in rough sandstones with resistivity values : (49 - 100) Ohm.m.  


2014 ◽  
Vol 31 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Grzegorz Pacanowski ◽  
Paweł Czarniak ◽  
Anna Bąkowska ◽  
Radosław Mieszkowski ◽  
Fabian Welc

Abstract This paper addresses the problem of assessing the leakproofness of the bottom of a deep foundation trench, secured by cavity wall, using geophysical methods of electrical resistivity tomography. The study was conducted on a large construction project in Lublin, in a place where there are complicated soil-water conditions: the groundwater level is above the proposed depth of foundation trench, the subsoil is heterogeneous, and there are karsted and weathered carbonate sediments with confined aquifer below the bottom of the trench. A hydraulic fracture occurred at the bottom of the trench during the engineering works, which caused the water flow into the trench. In order to recognize the soil-water conditions the first stage of geophysical measurements of electrical resistivity tomography (ERT) was made. The applied methodology allowed to determine the extent of the hydraulic fracture zone within the bottom of foundation trench. In order to assess the leakproofness of Diaphragm Wall the geophysical ERT measurements were repeated (stage 2) A clear reduction in the value of the electrical resistivity of soils in the area of hydraulic fracture was caused by clay injection. The results of ERT measurements are discussed and graphically presented.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 69
Author(s):  
Azadeh Hojat ◽  
Maddalena Ferrario ◽  
Diego Arosio ◽  
Marco Brunero ◽  
Vladislav Ivov Ivanov ◽  
...  

We present the results of laboratory experiments on a down-scaled river levee constructed with clayey material collected from a river embankment where a permanent resistivity instrument has operated since 2015. To create potential seepages through the levee, two zones (5 × 4 cm and 10 × 2 cm) were filled with sand during the levee construction. Electrical resistivity tomography (ERT) technique and Fiber Bragg Grating (FBG) technology were used to study time-lapse variations due to seepage. The ERT profile was spread on the levee crest and the Wenner array with unit electrode spacing a = 3 cm was used. Six organic modified ceramics (ORMOCER) coated 250 μm-diameter fibers were deployed in different parts of the levee. Time-lapse measurements were performed for both techniques from the beginning of each experiment when water was added to the river side until the water was continuously exiting from the seepage zones. The results showed that ERT images could detect seepages from the early stages. Although with a short delay compared to ERT, fiber optic sensors also showed their ability to detect water infiltrations by measuring temperature changes. Both technologies being successful, a discussion about respective peculiarities and pros and cons is proposed to suggest some criteria in choosing the proper technique according to the specific needs.


Sign in / Sign up

Export Citation Format

Share Document