scholarly journals Influence of Commercial Biochar Fillers on Brittleness/Ductility of Epoxy Resin Composites

2019 ◽  
Vol 9 (15) ◽  
pp. 3109 ◽  
Author(s):  
Mattia Bartoli ◽  
Mauro Giorcelli ◽  
Carlo Rosso ◽  
Massimo Rovere ◽  
Pravin Jagdale ◽  
...  

Production of versatile composites is a very attractive field. Carbon containing epoxy resins are one of the most relevant reinforced plastics used for a wide number of applications. In this research, we studied the influence of five different commercial biochar samples for the selective enhancement of brittleness and ductility of an epoxy based composite. We proved the relationship between biochar morphology and composites mechanical properties with the aid of FT-IR and FE-SEM analysis. We were able to improve the neat resin mechanical properties by doubling its Young’s modulus and ultimate tensile strength using a wheat straw derived material, and to increase its elongation by 40%, we used a Miscanthus derived biochar.

RSC Advances ◽  
2018 ◽  
Vol 8 (18) ◽  
pp. 9677-9684 ◽  
Author(s):  
Koji Matsuura ◽  
Yuki Umahara ◽  
Kazuma Gotoh ◽  
Yuko Hoshijima ◽  
Hiroyuki Ishida

In order to determine the molecular interaction to improve the mechanical properties of graphene oxide (GO)–epoxy resin composites, we investigated the relationship between GO oxidation properties and the tensile strength of the epoxy resin.


2020 ◽  
Vol 91 ◽  
pp. 106781
Author(s):  
Ting Zheng ◽  
Hang Xi ◽  
Zixuan Wang ◽  
Xiaohong Zhang ◽  
Yuan Wang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 508 ◽  
Author(s):  
Bo Wang ◽  
Fu-hua Lin ◽  
Xiang-yang Li ◽  
Xu-ran Ji ◽  
Si-xiao Liu ◽  
...  

Isotactic polypropylene (iPP) is a commonly used thermoplastic polymer with many excellent properties. But high brittleness, especially at low temperatures, limits the use of iPP. The presence of transcrystallization of iPP makes it possible for fiber-reinforced iPP composites with higher strength. Bacterial cellulose (BC) is a kind of cellulose with great potential to be used as a new filler to reinforce iPP due to its high crystallinity, biodegradability and efficient mechanical properties. In this study, the iPP/BC hamburger composite was prepared by a simple hot press and maleic anhydride grafted polypropylene (MAPP) was used to improve the interface compatibility of iPP and BC. The polarizing microscope (POM) photograph shows that BC successfully induces the transcrystallization of iPP. The differential Scanning Calorimeter (DSC) date proves that the addition of BC could improve the thermal properties and crystallization rate of the composite. Especially, this change is more obvious of the iPP/MAPP/BC. The mechanical properties of the iPP/BC composites were greatly increased. This DSC date is higher than BC; we used BC particles to enhance the iPP in our previous research. The scanning Electron Microscope (SEM) analysis intuitively shows that the interface of the iPP/MAPP/BC is more smooth and flat than the iPP/BC. The fourier Transform infrared spectroscopy (FT-IR) analysis of the iPP/BC hamburger composites was shown that a new C=O group vibration appeared at 1743 cm−1, which indicated that the hydrogen bond structure of BC molecules was weakened and some hydroxyl groups were substituted after modification which can increase the lipophilicity of BC. These results indicated that the BC fiber can easily induce the transcrystallization of iPP, which has excellent mechanical properties. Moreover, the addition of MAPP contributes greatly to the interface compatibility of iPP and BC.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1916 ◽  
Author(s):  
Mauro Giorcelli ◽  
Mattia Bartoli

In this work we focused our attention on an innovative use of food residual biomasses. In particular, we produced biochar from coffee waste and used it as filler in epoxy resin composites with the aim to increase their electrical properties. Electrical conductivity was studied for the biochar and biochar-based composite in function of pressure applied. The results obtained were compared with carbon black and carbon black composites. We demonstrated that, even if the coffee biochar had less conductivity compared with carbon black in powder form, it created composites with better conductivity in comparison with carbon black composites. In addition, composite mechanical properties were tested and they generally improved with respect to neat epoxy resin.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5720 ◽  
Author(s):  
Vicente Colomer-Romero ◽  
Dante Rogiest ◽  
Juan Antonio García-Manrique ◽  
Jose Enrique Crespo

Bio- and green composites are mainly used in non-structural automotive elements like interior panels and vehicle underpanels. Currently, the use of biocomposites as a worthy alternative to glass fibre-reinforced plastics (GFRPs) in structural applications still needs to be fully evaluated. In the current study, the development of a suited biocomposites started with a thorough review of the available raw materials, including both reinforcement fibres and matrix materials. Based on its specific properties, hemp appeared to be a very suitable fibre. A similar analysis was conducted for the commercially available biobased matrix materials. Greenpoxy 55 (with a biocontent of 55%) and Super Sap 100 (with a biocontent of 37%) were selected and compared with a standard epoxy resin. Tensile and three-point bending tests were conducted to characterise the hemp-based biocomposite.


2018 ◽  
Vol 5 (9) ◽  
pp. 19723-19727 ◽  
Author(s):  
Asmeeta Jagdev ◽  
Bidyut Prava Jena ◽  
Bijaya Bijeta Nayak ◽  
Suchismita Satapathy

Sign in / Sign up

Export Citation Format

Share Document