scholarly journals Contributions of Water-Related Building Installations to Urban Strategies for Mitigation and Adaptation to Face Climate Change

2019 ◽  
Vol 9 (17) ◽  
pp. 3575
Author(s):  
Pimentel-Rodrigues ◽  
Silva-Afonso

In addition to the possible contributions of buildings to mitigating CO2 emissions, increased attention is being paid to the potential impacts of climate change on urban environments. According to the United Nations, about 54% of the planet’s population currently lives in cities, but this percentage is expected to rise to 66% in 2050, which reveals the scale of this issue. This paper develops a reflection on the possible contributions of water-related building installations to mitigate emissions and increase urban area adaptation to the effects of climate change. One of the most promising solutions to facing climate change, which is analysed in detail in this paper, is combining rainwater harvesting systems with green roofs. However, in view of developing the necessary engineering projects, there are insufficient existing studies to estimate the parameters to be used in each location given their climate characteristics, particularly the monthly runoff coefficients, which constitute the key parameter for designing these installations in some regions. Some recent standards present generic theoretical values for designing these combined installations, but they are far from reality in some regions, such as the Mediterranean basin. Therefore, based on the data available in Portugal, this paper reports some of the results obtained from research on the values of the monthly runoff coefficients.

2019 ◽  
Vol 665 ◽  
pp. 262-274 ◽  
Author(s):  
Shouhong Zhang ◽  
Jianjun Zhang ◽  
Tongjia Yue ◽  
Xueer Jing

2021 ◽  
Author(s):  
Ákos Kristóf Csete ◽  
Ágnes Gulyás

<p>Urban water cycle suffers from ever increasing problems for what a modern city needs to prepare. The water cycle of most cities is not implemented in a sustainable way, which needs to be redesigned as a result of climate change. Through the climate change more extreme weather situations are expected to affect the life of cities. From aspect of the water cycle, this means extremely unequally distributed rainwater supply throughout the year. During drought periods, urban vegetation requires irrigation, often covered by cities with drinking water, a practice widely considered to be unsustainable. Therefore, finding appropriate methods and resources is crucial, in order to reduce the exposure of cities to the increasing climate extremes.</p><p>By collecting large amounts of rainwater and using it as irrigation water during droughts, it is possible to avoid the unnecessary waste of drinking water and to help preserve its limited supply in the future. A significant amount of precipitation flows through the surface of urban micro-catchments (e.g. roofs or other building surfaces), a significant part of which leaves the city through the sewer system without any usage.</p><p>The aim of our research is to create a rainwater harvesting potential map based on a building database in the study area of Szeged, Hungary. We used this building database to estimate the amount of rainwater that flows or evaporates on the top of buildings during a year, as well as the amount that can be considered as potentially collectable water. In addition to the GIS data, a complex meteorological database was also used.</p><p>The study was carried out in the EPA SWMM model. The building database contains nearly 20,000 building polygons, of which nearly every single polygon represents a separate catchment for this research. Based on the database, it is also possible to separate slope/pitched roof and flat roofs, which also allowed us to determine which roofs have the potential to be used as a green roofs to further facilitate efficient rainwater harvesting. Our result can be used to produce both city- and district-level (downtown, housing estate, garden house zones) summaries about the rainwater harvesting possibilities within Szeged. These results can be used to delineate areas where harvesting systems can be realistically installed. In addition to the spatial data, we can also acquire information on the seasonal distribution of the precipitation and thus the amount of collected water which can be used in drought periods.</p><p>Through our results we can get estimate the volume of rainwater that can be potentially collected from the surfaces of the building in Szeged. We believe, that our research may encourage urban planners to make into greater account the potential of rainwater storage in the local planning processes. This can greatly contribute to the decision-making processes at the local levels, and to the expansion of the knowledge related to green space-based integrated urban infrastructure management.</p>


2016 ◽  
Vol 73 (8) ◽  
pp. 1842-1847 ◽  
Author(s):  
Cristina M. Monteiro ◽  
Cristina S. C. Calheiros ◽  
Carla Pimentel-Rodrigues ◽  
Armando Silva-Afonso ◽  
Paula M. L. Castro

Green roofs (GRs) are becoming a trend in urban areas, favouring thermal performance of buildings, promoting removal of atmospheric pollutants, and acting as possible water collection spots. Rainwater harvesting systems in buildings can also contribute to the management of stormwater runoff reducing flood peaks. These technologies should be enhanced in Mediterranean countries where water scarcity is increasing and the occurrence of extreme events is becoming very significant, as a result of climate change. An extensive pilot GR with three aromatic plant species, Satureja montana, Thymus caespititius and Thymus pseudolanuginosus, designed to study several parameters affecting rainwater runoff, has been in operation for 12 months. Physico-chemical analyses of roof water runoff (turbidity, pH, conductivity, NH4+, NO3−, PO43−, chemical oxygen demand) have shown that water was of sufficient quality for non-potable uses in buildings, such as toilet flushing. An innovative approach allowed for the development of an expression to predict a ‘monthly runoff coefficient’ of the GR system. This parameter is essential when planning and designing GRs combined with rainwater harvesting systems in a Mediterranean climate. This study is a contribution to improving the basis for the design of rainwater harvesting systems in buildings with extensive GRs under a Mediterranean climate.


2019 ◽  
Vol 11 (21) ◽  
pp. 5918
Author(s):  
Gianoli ◽  
Bhatnagar

The impact of climate change dynamics has a multiplicative effect when the interlinkages between water and energy are considered. This also applies to climate change co-benefits that derive from adaptation and mitigation initiatives implemented at the urban level and that address the water-energy nexus. A better understanding of the water-energy nexus is a precondition for integrated resource planning that optimizes the use of scarce resources. Against this background, the paper assesses the potential impact of water-energy saving technologies (WEST) on the water-energy nexus of Cuenca, Ecuador, focusing on how vulnerability to climate change may affect the water metabolic cycle of the urban area. Water-energy saving technologies such as rainwater harvesting, solar water heaters, and micro water turbines, reduce water-related energy consumption and mitigate greenhouse gases emissions; thereby illustrating the potential to generate climate change mitigation and adaptation co-benefits. The paper relies on primary data collected through interviews and a survey as well as secondary data in order to assess the extent to which water-energy saving technologies influence the water-energy nexus in Cuenca’s urban water metabolic cycle. Within the context of climate change, the paper develops a business-as-usual scenario and assesses how this is modified by the implementation of water-energy saving technologies.


2020 ◽  
Author(s):  
Ali Feizi ◽  
Bahar Razavi

<p>Climate change represents a key challenge to the sustainability of global ecosystems and human prosperity in the twenty-first century. The impacts of climate change combined with natural climate variability are predominantly adverse, and often exacerbate other environmental challenges such as degradation of ecosystems, loss of biodiversity, and air, water and land pollution. Besides, rapid industrialization and increasing adaption of agrochemical based crop production practices since green revolution have considerably increased the heavy metal contaminations in the environment.</p><p>Assessing the impacts of climate change on our planet and addressing risks and opportunities is essential for taking decisions that will remain robust under future conditions, when many climate change impacts are expected to become more significant.</p><p>Here, we established a review survey to assess the impact of biochar amendment and agroforstry system on CO<sub>2</sub> sequestration and methaloid remediation.</p><p>Our data base showed that Agroforestry-based solutions for carbon dioxide capture and sequestration for climate change mitigation and adaptation in long-term is more practical and realistic options for a sustainable ecosystem and decreasing negative effect of climate change. This was more supported in arid and semi-arid regions as well as area with saline and alkaline soil (20%).</p><p>From a soil remediation standpoint, the general trend has been shifting from reduction of the total concentration to reduction of the physic-chemically and/or biologically available fractions of metals. This regulatory shift represents a tremendous saving in remediation cost. While metals are not degradable, their speciation and binding with soil through biochar amending reduced their solubility, mobility, and bioavailability. While agroforestry showed high efficiency in C sequestration (32%), biochar amendment raveled significant mitigation in heavymetals bioavailability (42%). However, studies which coupled both approaches are limited. Thus, we conclude that combined Agroforestry and biochar amendment regulates C sequestration and metalloids remediation more efficiently.</p>


2019 ◽  
Vol 25 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Stephanie Chalupka ◽  
Laura Anderko

The predicted impacts of climate change are fast becoming a reality and are already adversely affecting human health and health systems. Events such as flooding, hurricanes, tornadoes, and wildfires are challenging communities to re-evaluate whether their schools provide a safe, healthy environment. Among the populations most vulnerable to the impacts of our changing climate are our children. Nurses are key to supporting mitigation and adaptation efforts to promote more resilient school environments, using approaches based on values of the common good and social justice.


2010 ◽  
Vol 7 (5) ◽  
pp. 7191-7229 ◽  
Author(s):  
S. N. Gosling ◽  
R. G. Taylor ◽  
N. W. Arnell ◽  
M. C. Todd

Abstract. We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangxi (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard), SLURP v. 12.7 (Mekong), Pitman (Okavango), MGB-IPH (Rio Grande), AV-SWAT-X 2005 (Xiangxi) and Cat-PDM (Harper's Brook). Simulations of mean annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961–1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM) to explore response to different amounts of climate forcing, and (2) a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty. We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low monthly runoff. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are represented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs. This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evapotranspiration estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme (Q5, Q95) monthly runoff, all of which have implications for future water management issues.


Sign in / Sign up

Export Citation Format

Share Document